Устройство плавного пуска и торможения

Устройство плавного пуска и торможения

Данный раздел посвящен теоретическим основам частотного регулирования и принципам работы устройства плавного пуска.

Принцип работы преобразователя частоты

Частотный преобразователь — устройство, позволяющее осуществлять регулирование скорости вращения электродвигателей посредством изменения частоты электрического тока.

Для понимания процесса частотного регулирования для начала необходимо вспомнить из курса электротехники принцип работы асинхронного электродвигателя.

Вращение вала электродвигателя происходит за счет магнитного поля создаваемого обмотками статора. Синхронная частота вращения магнитного поля зависит от частоты напряжения питающей сети f и выражается следующей зависимостью:

где p – число пар полюсов магнитного поля.

Под действием нагрузки частота вращения ротора электродвигателя несколько отличается от частоты вращения магнитного моля статора вследствие скольжения s:

Следовательно частота вращения ротора электродвигателя представляет собой зависимость от частоты напряжения питающей сети:

Таким образом требуемую частоту вращения вала электродвигателя n p можно получить путем изменения частоты напряжения сети f. Скольжение при изменении частоты вращения не увеличивается, а соответственно потери мощности в процессе регулирования незначительны.

Для эффективной работы электропривода и обеспечения максимальных значений основных характеристик электродвигателя требуется вместе с частотой изменять и питающее напряжение.

Функция изменения напряжения в свою очередь зависит от характера момента нагрузки. При постоянном моменте нагрузки M c = const напряжение на статоре должно регулироваться пропорционально частоте:

Для случаев вентиляторного режима:

При моменте нагрузки, обратно пропорциональном скорости:

Таким образом, плавное регулирование частоты обеспечивается одновременным регулированием частоты и напряжения на статоре асинхронного двигателя.

Рис 1. Схема частотного преобразователя

На рис. 1. представлена типовая блок-схема низковольтного преобразователя частоты. В нижней части рисунка для каждого блока наглядно изображены графики входных и выходных напряжений и токов.

Сначала напряжение сети (UBX) поступает на вход выпрямителя (1). Далее для сглаживание выпрямленного напряжения (UВЫПР) применяется конденсаторный фильтр (2). Затем уже постоянное напряжение (Ud) подается на вход инвертора (3), где происходит преобразование тока из постоянного обратно в переменный, формируя тем самым выходной сигнал с необходимыми значениями напряжения и частоты. Для получение сигнала синусоидальной формы применяются сглаживающий фильтр (4)

Для более наглядного понимания принципа работы инвертора рассмотрим принципиальную схему частотного преобразователя на рис. 2

Рис. 2 – принципиальная схема низковольтного преобразователя частоты

В основном в инверторах применяется метод широтно-импульсной модуляции (ШИМ). Принцип данного метода заключается в попеременном включении и выключении ключей генератора, формируя импульсы различной длительности (рис. 3). Синусоидальный сигнал получается за счет индуктивности двигателя или применения дополнительного сглаживающего фильтра.

Рис. 3. Выходной сигнал преобразователя частоты

Таким образом, управляя процессом включения-выключения инверторных ключей, мы можем формировать выходной сигнал нужной частоты, а следовательно управлять технологическими параметрами механизма путем изменения частоты вращения привода.

Теория и принцип работы устройства плавного пуска

В связи с особенностями переходных процессов происходящих во время пуска электродвигателя токи обмоток достигают 6-8 кратной величины номинального тока электродвигателя, а вращающий момент на его валу достигает 150-200% от номинального значения. Как следствие это увеличивает риск поломки механической части двигателя, а также приводит к падению напряжения питающей сети.

Для решение данных проблем на практике применяется устройства плавного пуска электродвигателей, обеспечивающие постепенное увеличение токовой нагрузки.

Помимо снижения токовых нагрузок мягкие пускатели позволяют: .

  • Снизить нагрев обмоток двигателя;
  • Снизить просадки напряжения во время пуска;
  • Обеспечить торможение и последующий запуск двигателя в установленный момент времени;
  • Снизить гидроудары в напорных трубопроводах при работе в составе привода насоса;
  • Снизить электромагнитные помехи;
  • Обеспечить комплексную защиту электродвигателя при пропадании фазы, перенапряжении, заклинивании и пр;
  • Повысить надежность и долговечность системы в целом.

Принцип работы УПП

Типовая схема устройства плавного пуска представлена на рис. 1

Рис. 1. Типовая схема устройства плавного пуска

Изменением угла открытия тиристоров осуществляется регулирования выходного напряжения УПП. Чем больше угол открытия тиристора — тем больше величина выходного напряжения, питающего электродвигатель.

Рис. 2. Формирование выходного напряжения УПП

Принимая во внимание то что величина крутящего момента асинхронного электродвигателя пропорциональна квадрату напряжения, то снижение напряжения снижает величину вращающего момента вала двигателя. При помощи такого метода пусковые токи электродвигателя снижаются до величины 2. 4 IНОМ, при этом время разгона несколько увеличивается. Наглядное изменение механической характеристики асинхронного электродвигателя при понижении напряжении показано на рис. 3

Рис 3. Механические характеристика двигателя

Снижение токовой нагрузки в процессе мягкого пуска электродвигателя наглядно показаны на рис. 4.

Рис. 4. Диаграмма плавного пуска асинхронного электродвигателя показана

На рис. 1. продемонстрирована типовая схема устройства плавного пуска однако стоит отметить, что реальная схема мягкого пускателя будет завесить в первую очередь от условий его эксплуатации. Например, для бытового бытовой инструмента и электродвигателя привода промышленной дробилки требуются различные устройства плавного пуска. Важнейшими параметрами, определяющими режимы работы устройств плавного пуска, являются время пуска и максимальное превышение по току.

В зависимости от этих параметров выделяют следующие режимы работы устройств плавного пуска:

  • Нормальный: пуск 10-20 секунд, ток при пуске не более 3,5 Iном.
  • Тяжелый: пуск порядка 30 секунд, тока при пуске не превышает 4,5 Iном
  • Сверхтяжелый: время разгона не ограничено, системы с большое инерцией, пусковой ток в диапазоне 5,5…8 Iном

Устройства плавного пуска можно разделить на следующие основные группы:

1. Регуляторы пускового момента
Данный тип устройств осуществляет контроль только одной фазы трехфазного двигателя. Контроль одной фазой дает возможность снижать пускового момент электродвигателя двигателя, но при этом снижение пускового тока происходит незначительное. Устройства данного типа не могут применяться для уменьшения токовых нагрузок в период пуска, а также для пуска высокоинерционных нагрузок. Однако они нашли применение в системах с однофазными асинхронными электродвигателями.

Читайте также:  Виниловые тисненые на флизелиновой основе как клеить

2. Регуляторы напряжения без обратной связи
Данный тип устройств работает по следующему принципу: пользователь задает величину начального напряжения и время его нарастания до номинальной величины и наоборот. Регуляторы напряжения без обратной связи могут осуществлять контроль как двух так и трех фаз электродвигателя. Такие регуляторы обеспечивают снижение пускового тока снижением напряжения в процессе пуска.

3. Регуляторы напряжения с обратной связью
Данный тип УПП представляет собой более совершенную модель описанного выше устройств. Наличие обратной связи по позволяет управлять процессом увеличения напряжения добиваясь оптимального режима пуска электродвигателя. Данные о токовой нагрузке позволяет также организовать комплексную защиту электродвигателя от перегрузки, перекоса фаз и т.п.

4. Регуляторы тока с обратной связью
Регуляторы тока с обратной связью представляют собой наиболее совершенные устройства плавного пуска. Принцип работы основан на прямом регулировании тока а не напряжения. Это позволяет добиться наиболее точное управление пуском электродвигателя, а также облегчает настройку и программирование УПП.

Электрические двигатели переменного тока с короткозамкнутым ротором отличаются простотой конструкции, невысокой стоимостью и являются самыми распространенными электрическими машинами. Однако, электродвигатели такого типа имеют недостатки, препятствующие их применению в ряде случаев.

При непосредственном пуске электродвигателя от коммутирующего электроаппарата момент на валу превышает номинальный в 1,5 – 2 раза, потребляемый двигателем ток в 3-8 раза.

Для того чтобы устранить эти недостатки, используют устройства плавного пуска или УПП (устройство плавного пуска). Эти устройства предназначены:

  • Для обеспечения плавного пуска и остановки.
  • Для снижения величины пускового тока.
  • Для синхронизации пускового момента с фактическим моментом нагрузки на валу.

До появления электронных устройств для ограничения пускового момента и тока широко применялись механические тормоза, муфты, реакторы, пусковые резисторы. Использование электронных УПП более эффективно. Уменьшение величины тока и момента при включении двигателя через устройство плавного пуска достигается плавным увеличением напряжения в обмотках электрической машины.

Сферы применения устройств плавного пуска

Прежде чем ознакомиться с параметрами выбора УПП, рассмотрим, при каких режимах пуска и условиях требуется установка этого электроаппарата.

По нагрузке и разности пусковых и номинальных токов различают следующие типы пусков электродвигателей:

  • Легкий пуск. При запуске электропривода ток не превышает номинального значения умноженного на три, переходной процесс длится не более 20 секунд. Для такого оборудования используют простейшие УПП.
  • Тяжелый пуск. В производственном оборудовании со значительной инерцией или с запуском под нагрузкой, токи возрастают более чем в 4 раза, длительность переходного процесса составляет более 30 секунд.
  • Особо тяжелый пуск. При таких условиях величина пускового тока может составлять 6-ти, 8-ми кратное значение от номинала. Разгон электродвигателя также занимает значительное время.

УПП применяются в составе электропривода различного производственного оборудования и технологических установках с тяжелыми и особо тяжелыми условиями пуска. Кроме того, их применение обосновано:

  • При ограниченной мощности электросети. Пусковые токи создают перегрузку, при которой падает напряжение, срабатывает защита, перегреваются и отключаются генераторы. В таких случаях установка УПП является решением проблемы. При этом следует учесть, что устройство снижает пусковой ток в лучшем случае в 2,5 раза. Если мощности сети недостаточно, следует установить частотный преобразователь.
  • При недопустимости быстрого пуска. При непосредственном запуске момент на валу электродвигателя гораздо выше номинального. Это приводит к ударным нагрузкам на механическую часть оборудования, вызывает его поломки. УПП обеспечивает ограничение пускового момента и с успехом решает эту проблему.

При срабатывании автоматического выключателя до того, как вал двигателя достигает номинальной скорости вращения, также же может помочь установка устройства плавного пуска.

  • На электроприводе насосных агрегатов. При пуске с повышенным моментом и резкой остановке насосных установок в сети возникают гидравлические удары, повреждающие запорно-регулирующую арматуру, контрольно-измерительные приборы, трубопровод. Плавный пуск и остановка агрегатов, которые обеспечивают УПП, позволяет избежать этих проблем.
  • На вентиляционном оборудовании. Высокий пусковой момент вызывает обрыв ременной передачи, увеличивает износ подшипников. Вентиляторы также требуют плавного запуска и остановки приводного двигателя.
  • На компрессорном оборудовании и центрифугах. Для привода такого оборудования необходимо согласование момента на валу и фактической нагрузки. Пульсации, возникающие при резком пуске и разгоне электродвигателя, отрицательно сказываются на работе таких промышленных установок.
  • На мельницах, дробильных установках и другом оборудовании с постоянным моментом нагрузки. Использование привода с УПП исключает механические удары при запуске.
  • На конвейерах и других промышленных установках с приводом через редуктор. Применение УПП снижает ударную нагрузку на шестеренки и продлевает срок службы оборудования.

Характеристики УПП

Основными критериями выбора УПП являются диапазон ограничения тока, степень защиты корпуса, допустимое количество пусков за единицу времени, номинальный ток и напряжение, допустимая мощность электродвигателя, возможность параллельного включения шунтирующего электроаппарата. Выбор устройства осуществляется по стандартным методикам.

При выборе УПП также необходимо учесть наличие следующих функций:

  • Запуск в функции тока или напряжения. Устройства плавного пуска с такой функцией применяют при ограниченной мощности питающей сети. Такие УПП позволяют осуществлять регулировку тока и избежать перегрева кабелей, сработки защиты, остановку генераторов, чувствительных к резким колебаниям потребляемого нагрузкой тока. Для технологического оборудования, где недопустим быстрый пуск с повышенным моментом, используют УПП с пуском в функции напряжения. Такие устройства плавно увеличивают напряжение в обмотках электрических машин. Для более точной регулировки используют УПП с обратной связью по току и напряжению.
  • Количество фаз. Для пуска электродвигателей используются УПП с регулировкой электрических параметров по одной, двум и трем фазам. Устройства первых двух типов используются для привода оборудования с нечастым запуском, так как несимметричная нагрузка в момент пуска отрицательно сказывается на работе электрической машины.
  • Наличие шунтирующего контактора. При завершении переходного процесса целесообразно отключить подачу тока через устройство плавного пуска, чтобы исключить перегрев симистров. Это достигается параллельным включением в цепь контактора, который замыкает силовые контакты после разгона электродвигателя. Существуют модели УПП, не предусматривающие параллельного подключения контакторов, однако, для мощного двигателя лучше выбрать устройство с шунтирующим коммутирующим аппаратом.
  • Функции защиты. Многие УПП имеют встроенную защиту от перегрева самого устройства, изменения частоты питающего напряжения, снижения величины выходного тока, а также функции отключения нагрузки при превышении времени разгона, обрыва фаз, неравномерной нагрузки. В некоторых моделях также возможно подключение датчика нагрева обмоток электродвигателя. Для защиты привода с УПП от коротких замыканий необходимы предохранители или автоматические выключатели.
  • Функции регулирования скорости. Существуют УПП, где реализована возможность снижения частоты вращения электродвигателя. Однако, УПП не заменяют частотный преобразователь. Регулировка скорости осуществляется ступенчато. При длительной работе на пониженной скорости УПП сильно перегревается. Устройство плавного пуска не обеспечивает долговременной работы двигателя в режиме пониженной скорости. Такие режимы применяются при регулировке и наладке производственного оборудования.
  • Режим торможения. Для приводов инерционного оборудования следует выбрать УПП с функцией торможения. В этом режиме на обмотки электродвигателя подается напряжение, вызывающее торможение электрической машины. Такие устройства применяют для подъемников, транспортеров, тяговых вентиляторов.
  • Контроль состояния байпасного контактора. При незамкнутых силовых контактах шунтирующего контактора по достижении номинальной частоты вращения ротора электродвигателя, УПП осуществляет отключение привода.
  • Пуск с максимальным моментом. Устройства плавного пуска с этой функцией подают на обмотки номинальное напряжение питающей сети. После резкого пускового толчка, напряжение ограничивается. Далее разгон электрической машины осуществляется в плавном режиме. УПП с такой функцией используется для приводов оборудования с включением под значительной нагрузкой.
Читайте также:  Чертеж якоря для надувных лодок

Преимущества УПП

Включение УПП в состав электропривода дает следующие преимущества:

  • Возможность использования мощных двигателей при маломощных электрических сетях. Ограничение бросков тока позволяет избежать срабатывания защитных электроаппаратов, перегрева обмоток трансформаторов, питающих токоведущих линий, перегрузок и остановок генераторов, а также снижения напряжения в сети, которое негативно влияет на другие электроприемники. Использование УПП позволяет устанавливать промышленное оборудование с тяжелыми и особо тяжелыми условиями пуска при ограничении мощности сети питания, когда применение другого электрооборудования для снижения тока пуска невозможно.
  • Снижение износа электродвигателей. Пусковые токи вызывают перегрев обмоток, старение их изоляции, перегрев и коррозию контактных групп, а также к преждевременному износу коммутирующих аппаратов. Увеличение крутящего момента при прямом запуске приводит к увеличению нагрузки на подшипники и другие механические элементы электродвигателя. Плавный пуск позволяет продлить срок эксплуатации двигателей и увеличить промежутки между ТО (техническим обслуживанием) и ремонтами электрических машин.
  • Уменьшение износа промышленного оборудования. Использование УПП обеспечивает плавный разгон. Это снижет ударные нагрузки на шестеренчатые редукторы, ременные приводы и другие механизмы.
  • Обеспечение безопасности технологических процессов. Многие примышленные установки нельзя резко останавливать и запускать. Например, быстрый пуск насосных агрегатов приводит к гидроударам и возникновению аварийных ситуаций. Использование УПП снижает вероятность аварий.
  • Возможность отказаться от механических устройств для торможения, а также электротехнических устройств для ограничения тока. Устройство плавного пуска заменяют тормозные муфты, реакторы, а также другое оборудование.
  • Невысокая стоимость. Средняя стоимость УПП ниже цены частотных регуляторов. В ряде случаев установки УПП достаточно для корректной работы привода.
  • Наличие защиты от ненормальных и аварийных режимов работы. Некоторые модели УПП защищают от пропадания фаз, несимметричной нагрузки и других аномальных режимов.
  • Возможность встраивания в системы автоматизации. УПП с микропроцессорными устройствами управления поддерживают протоколы связи с удаленными ПК. Контроль и управление приводами с такими УПП можно осуществлять в автоматическом режиме.
  • Снижение электромагнитных помех. При регулировании пуска по всем трем фазам, уменьшается интенсивность магнитного поля, которое создается двигателем при пуске. При использовании УПП отпадает необходимость установки дополнительных фильтров на слаботочных линиях, чувствительных к наводкам.

Установка УПП дает неплохой экономический эффект. Он достигается снижением затрат на ТО и ремонт электродвигателей и технологического оборудования, экономии электроэнергии, расходов на закупку более мощных коммутирующих электротехнических устройств, дополнительную защиту.

Схема УПП

Схема наиболее распространенных УПП выполняется на базе ключей из встречно-параллельно включенных тиристоров.

Плавная регулировка напряжения на обмотках достигается постепенным изменением угла проводимости полупроводниковых элементов путем подачи импульсов на управляющие электроды. После достижения номинального напряжения на обмотках включается шунтирующий контактор. При торможении электрической машины вначале отключается параллельно включенный коммутирующий аппарат, затем с генератора пусковых импульсов поступают сигналы, постепенно уменьшающие угол проводимости тиристоров до полной остановки электродвигателя.

На рисунке представлена схема УПП с регулировкой по одной фазе. Такое устройство отличается невысокой стоимостью. Однако, при пуске возникает несимметричная нагрузка, увеличивается нагрев электромашины, возникают электромагнитные помехи. УПП такого типа используют для привода промышленного оборудования с нечастыми пусками.

Для оборудования с тяжелыми условиями запуска применяют УПП с регулировкой по 2-м фазам.

Для технологических установок с особо тяжелыми условиями запуска и частыми включениями и отключениями привода используют УПП с симисторными ключами на всех трех фазах и обратной связью по току или напряжению. Их использование не вызывает дисбаланса тока на фазах, увеличения электромагнитных помех при запуске и торможении электрической машины.

Документация:

ИНСТРУКЦИИ:

Стандартные приводы: до 7.5кВт, 15..45кВт

Краны (перемещение): до 7.5кВт, 15..45кВт

Червячные редукторы: до 7.5кВт, 15..45кВт

Шредеры, дробилки: до 7.5кВт, 15..45кВт

Вибромеханизмы: 15..45кВт

Также
рекомендуем:

интеллектуальные
пускатели для приводов
от 0.04 до 7.5 кВт

КРАТКОЕ ОПИСАНИЕ

Производитель: ООО "НПФ "Битек"

БиСТАРТ-Р — линейка реверсивных тиристорных устройств плавного пуска / бесконтактных пускателей для управления любыми реверсивными механизмами с функциями плавного пуска и реверса, динамического торможения постоянным током или плавным остановом, комплексной электронной защитой электродвигателя и дополнительными технологическими функциями.

Читайте также:  Поплин какая плотность должна быть

Важная особенность БиСТАРТ-Р — схемная взаимозаменяемость с магнитными реверсивными пускателями. Провода, подходящие к двум катушкам заменяемого магнитного реверсивного пускателя переподключаются к входам управления устройств БиСТАРТ-Р, которые могут иметь различные исполнения по напряжению: 220..380В, 110В, 42В, 24В.

ОСНОВНЫЕ ФУНКЦИИ:

  • Бесконтактное включение Вперед;
  • Бесконтактное включение Назад (реверс);
  • Управление пуском: плавный пуск, безударный пуск, бросок тока при пуске;
  • Управление остановом: плавное динамическое торможение постоянным током, плавный останов с понижением напряжения (в моделях для червячных редукторов);
  • 10 электронных защит + история ошибок;
  • Самодиагностика (перегрев радиатора, отказ тиристора);
  • Специальные технологические функции (зависит от модификации): дожим задвижек, автореверс при перегрузке и др.

ОБЛАСТЬ ПРИМЕНЕНИЯ:

  • крановое и подъемно-транспортное оборудование (краны, лебедки, подъемники и др.);
  • рельсовые тележки;
  • реверсивные конвейеры;
  • шредеры и дробилки (модели с функциями автореверса по перегрузке);
  • станочное обрудование;
  • запорно-регулирующая арматура (унифицированные модели);
  • рольганги, прессы и др.

Преимущества:

  • 100% бесконтактная коммутация — высокая надежность при частых пусках, запыленности или работе в магнитных полях ;
  • Подключение в существующую схему вместо реверсивного контактора;
  • Эффективное плавное динамическое торможение без тормозных резисторов;
  • Рекуперация электроэнергии в сеть при опускании груза в приводах подъема кранов;
  • Эффективный алгоритм плавного пуска с нарастанием тока по рампе (в стандартных и крановых моделях);
  • Комплекс защит с диагностикой, включая быструю защиту при выходе на упор/заклинивание;
  • Тиристоры и модули европейских производителей (Semikron, Ixys) для максимальной надежности;
  • Гарантия 2 года + более 10 лет безотказной эксплуатации в России.

ФУНКЦИОНАЛЬНЫЕ МОДИФИКАЦИИ (-XX)

Модификация Основные функции Инфо
БСТ-xxР/380-x0
(общепро-
мышленные)

— плавный пуск (нарастание тока), прямой безударный пуск
— переключение параметров пуска по сигналу ("Ограничение тока 2");
— динамическое торможение с регулировкой тока
— реле тормоза для кранов (в моделях 30А..90А)
— электронные защиты

БСТ-xxР/380-x1
(для
запорной
арматуры)

— функция дожима по току
— плавный пуск (ограничение тока), прямой безударный пуск
— динамическое торможение с регулировкой тока
— электронные защиты

БСТ-xxР/380-x0К
(для кран-балок,
до 16А)

— реле тормоза
— плавный пуск (нарастание тока), прямой безударный пуск
— переключение параметров пуска по сигналу ("Ограничение тока 2");
— динамическое торможение с регулировкой тока
— электронные защиты

БСТ-xxР/380-x0В
(для приводов
вертикального подъема/
опускания)

— плавный пуск с раздельными параметрами настройки (движение вверх 0.1..2 сек, движение вниз 0.1..0.5 сек), прямой безударный пуск
— реле тормоза с раздельной регулировкой включения при движении верх и вниз
— электронные защиты

БСТ-xxР/380-x0Ч
(для
червячных
редукторов)

— плавный останов со снижением напряжения
— плавный пуск (нарастание тока), прямой безударный пуск
— переключение параметров пуска по сигналу ("Ограничение тока 2")
— электронные защиты

БСТ-xxР/380-x0Д
(для
дробилок/
шредеров)

— функция автоверса при перегрузке;
— синхронная работа 2-х приводов с функцией автореверса (в моделях 30А..90А)
— плавный пуск (ограничение тока), прямой безударный пуск
— динамическое торможение с регулировкой тока
— электронные защиты

БСТ-xxР/380-x0Т
(для
вибромеханизмов)

— функция динамического торможения высокоинерционных механизмов (задержка начала торможения до 20 секунд + динамическое торможение до 20 секунд);
— плавный пуск (ограничение тока), прямой безударный пуск
— электронные защиты

специальные унифицированные модели для задвижек, регуляторов (до 16А). Подробнее

Применение реверсивных устройств плавного пуска БиСТАРТ-Р для плавного пуска и торможения кранов, тельферов, кран-балок

Реверсивные устройства плавного пуска "БиСТАРТ-Р" широко применяются в подъемно-транспортных механизмах в приводах передвижения и подъема кранов в т.ч. с электродвигателями MTF, MTH, MTKF, MTKH

ПЕРЕДВИЖЕНИЕ МОСТА И ТЕЛЕЖКИ

  • Используются модели с реле управления тормозом: модели для кран-балок до 16А (БСТ-xxР/380-x0K) и стандартные модели 30А..90А (БСТ-xxР/380-x0);
  • Функция плавного пуска с нарастанием тока и плавным динамическое торможением позволяет настроить плавный ход и плавное торможение крана;
  • 2 или 4 двигателя работающие параллельно подключаются к одному устройству БиСТАРТ-Р;
  • Напряжение управления БиСТАРТ-Р подбирать по напряжению катушек существующих реверсивных контакторов для взаимозаменяемости;
  • При переводе электродвигателей с фазным ротором на одну скорость рекомендуется оставить промежуточное сопротивление, а не закорачивать обмотку полностью;
  • Электромагнитный тормоз или гидротолкатель необходимо включать через отдельный пускатель, управляемый от реле тормоза в БиСТАРТ-Р

ПОДЪЕМ/ОПУСКАНИЕ

  • Привод подъема с планетарным редуктором является приводом с односторонней нагрузкой, при опускании груза двигатель работает в тормозном генераторном режиме с рекуперацией в сеть;
  • Плавный пуск должен быть настроен только с быстрым нарастанием напряжения до 0.5 секунд;
  • Необходимо использовать только специальные модели для приводов подъема БСТ-xxР/380-x0В с раздельной настройкой параметров пуска и порога включения реле тормоза для движения вверх и вниз;
  • При параметрах плавного нарастания напряжения до 0.5 секунд тормоз с гидротолкателем можно оставлять подключенным к электродвигателю;
  • Для наибольшего смягчения пуска тормоз можно включать через отдельный пускатель, управляемый от встроенного в БСТ реле управления тормозом.

СРОК ИЗГОТОВЛЕНИЯ: 5-10 РАБОЧИХ ДНЕЙ

ДОСТАВКА: БЕСПЛАТНАЯ ДОСТАВКА ДО ТЕРМИНАЛА ДЕЛОВЫЕ ЛИНИИ ИЛИ ТК КИТ В ЕКАТЕРИНБУРГЕ

ГАРАНТИЯ: 2 ГОДА

ПРОДУКЦИЯ | ПОДОБРАТЬ МОДЕЛЬ

БиСТАРТ-Р
Реверсивные софтстартеры для кран-балок, дробилок, станков

МикроСТАРТ-А
Интеллектуальные блоки управления задвижками / регуляторами + Modbus RTU

МикроСТАРТ-А
Интеллектуальные блоки управления задвижками / регуляторами (новые модели)

Решения для
запорно-регулирующей
арматуры (каталог)

Решения для
кранов и ГПМ
(статья)

© 2003-2019 ООО "НПФ "Битек"

620041, Екатеринбург, ул.Кислородная, 8
(Схема проезда)

Бесконтактные пускатели и устройства плавного пуска:
Реверсивные: МикроСТАРТ-Р | МикроСТАРТ-А | БиСТАРТ-Р | БСТ-12Р/380-32(-33)
Нереверсивные: МикроСТАРТ-М | БиСТАРТ-Н
Интеллектуальное управление электроприводами ЗРА: МикроСТАРТ-А

Ссылка на основную публикацию
Adblock detector