Условие резонанса в параллельном колебательном контуре

Условие резонанса в параллельном колебательном контуре

Если источник сигнала подключен параллельно элементам L и С, то контур называется параллельным.

При параллельном включении напряжение действующее на L и С одно и тоже, а токи протекающие в L и С разные.

В идеальном контуре без потерь в случае равенства ХС и ХLС и ІL), суммарный ток обращается в 0, то есть сопротивление контура приближается к бесконечности.

Если же частота сигнала спадает, то ХС становится больше чем XL, следовательно IС

Кроме последовательного и параллельного контуров, называемых контурами 1-го вида, в радиотехнике часто применяют контуры П-го и Ш-го вида.

Особенностью контуров П-го вида является то, что у них есть две резонансные частоты f0посл и f0пар.

Например в контуре с двумя индуктивностями можно определить такую частоту (ωпосл), на которой L2 и С образуют последовательный колебательный контур, но на частотах ниже ωпосл общее реактивное сопротивление цепи L2C(x) имеет емкостной характер. Следовательно вместе с L1 цепь L2C образует параллельный колебательный контур. Частота последовательного резонанса определяется из условия:

параллельного резонанса из условия:

Аналогично в контуре с двумя конденсаторами в цепи: C2L наблюдается последовательный резонанс при условии ωL = 1/ωС2 и параллельный резонанс при условии .

Эквивалентное сопротивление контуров П-го и Ш-го вида (R0e), при параллельном резонансе меньше, чем у контура 1-го вида с теми же элементами.

Например если в контуре П-го вида с двумя катушками L1 = L2 = L, то R0e для контура 1-го вида , а для контура П-го вида будет , то есть в четыре раза меньше.

Если обозначить отношение — коэффициент включения, то получится:

*

где р ≤ 1 — коэффициент включения.

Это соотношение справедливо также для контура Ш-го вида с двумя конденсаторами только в этом случае:

Из выражения * видно что для контура П-го и Ш-го вида шунтирующее действие внешней нагрузки ослабляется в 1/р 2 раз.

Подключение к параллельному контуру (либо к отдельному конденсатору или индуктивности) источника сигнала с внутренним сопротивлением Ri, либо другого внешнего сопротивления, уменьшит его сопротивление.

Например если к контуру с сопротивлением R = p 2 /r подключить источник сигнала с сопротивлением Rі = R0e, тогда эквивалентное сопротивление контура уменьшится в два раза (при )

Но это равносильно тому, что в контуре увеличилось сопротивление потерь r в два раза.

Следовательно между шунтирующим внешним сопротивлением и сопротивлением потерь существует обратно пропорциональная зависимость. Таким образом если к параллельному контуру подключено внешнее шунтирующее сопротивление Rш, то это равносильно включению дополнительного сопротивления последовательно с катушкой индуктивности, ухудшающего добротность контура.

Например есть контур у которого:

ρ = ХLC =100 Ом, на частоте 1000кГц, и r =1Ом.

Тогда Q = ρ/2 =100, П = 2Δf = f/Q =1000/100 =10Кгц

R0e = ρ 2 /r = 10 кОм.

Если к этому контуру подключить источник сигнала (например антенну) с внутренним сопротивлением 1100 Ом, то это равносильно включению дополнительного сопротивления потерь.

Теперь

Таким образом пропускание увеличилось в 10 раз. Если же теперь подключить антенну к отводу от 1/10 витков, то

При этом полоса почти не расширяется, но ослабляется входящий сигнал из-за падения напряжения на Rі, при малом Rвх.

Связанные колебательные контуры

Контуры называются связанными, если энергия одного из них через элемент связи передается во второй. Элементом связи может быть, например магнитное поле, которое пересекает обороты катушки двух колебаний контуров, такая связь называется трансформаторной.

Если в первый контур подавать сигнал (U) с частотой равной резонансным частотам этих контуров, то в первом контуре возникнет ток І1 совпадающий с фазой U. Этот ток создает в катушке L1 магнитный поток Ф, который пересекает витки катушки L2 и вызовет в ней ЭДС взаимоиндукции U1,2:

, т.к. , то , где М – взаимоиндуктивность.

Эта ЭДС вызовет ток І2 совпадающий по фазе с U1,2 (при резонансе R – активное). Ток І2 вызовет ЭДС взаимоиндукции (U2,1) катушки L1.

Эта ЭДС направленная против U, поэтому суммарное напряжение и ток І1 уменьшается. Это равнозначно тому, что увеличилось сопротивление потерь Rn1 в первом контуре. Таким образом, второй контур как бы вносит сопротивление в первый, причем тем большее, чем больше взаимоиндукция (М). Если частота сигнала не отвечает резонансным частотам контуров, то вносимое сопротивление будет иметь активную и реактивную составляющие.

Если f сигнала f контуров, то их сопротивление носит индуктивный характер, а токи в обоих контурах отстают от напряжений.

В этом случае ЭДС U2,1 также имеет активную (U2,1А) и реактивную (U2,1Р) составляющие, поэтому вносится активное и реактивное сопротивление. Причем реактивная составляющая направлена против ЭДС самоиндукции катушки L1, то есть уменьшит напряжение на ней, поэтому реактивное внесенное сопротивление имеет емкостной характер.

Кроме трансформаторной связи между контурами может быть автотрансформаторная связь, и связь за счет внутренней и внешней емкости.

При любом виде связи, связь осуществляется путем сопротивления связи.

При трансформаторной связи, сопротивление связи определяется взаимоиндуктивностью.

При индуктивной связи, сопротивление связи определяется катушкой связи.

При индуктивной внутриемкостной связи, сопротивление связи зависит от емкости связи.

Аналогично, при зовніємнісному связи.

При любом виде связи, степень связи количественно оценивается коэффициентом связи.

,

где Хсв – реактивное сопротивление элемента связи. Х1, Х2 – реактивное сопротивление элементов контуров, которые имеют такой же характер, как и Хсв.

— Для трансформаторной связи:

.

— Для автотрансформаторной связи:

— Для внутриемкостной связи:

— Для внешнеемкостной связи:

Чем больше степень связи между контурами (Ксв), тем больше вносимые сопротивления. Так как вносимое сопротивление имеет иной характер, чем сопротивление контура при расстройке (при f Ккритич в форме АЧХ на fо появляется провал из-за того, что Rвнес возрастает и становится больше, чем Rвнес на частотах частотных резонансов. При К = Ккритич ,Rвнес= Rп1. Это условие выполняется и на частотах связи.

Качественные показатели связанных контуров определяются в зависимости от того, какие требования предъявляются к ним.

Чаще всего от связанных контуров требуется обеспечить определенную полосу пропускания при высокой крутизне АЧХ. В связанных контурах П (полоса) определяется не только через f и Q, а и через Ксв. При очень маленькой связи (Ксв Ккр ток І2 уменьшается т.к. ток І1 тоже уменьшается, a Rвнес из первого во второй контур увеличивается

Электрические фильтры и их классификация

Электрический фильтр – это устройство пропускающее сигналы определенных частот.

Электрические фильтры обычно используются для выделения требуемых гармонических составляющих из несинусоидальных сигналов.

Частоты, которые фильтры пропускают (должны пропускать) без заметного ослабления, составляют полосу пропускания фильтра.

Частоты, которые фильтры не пропускают составляют полосу задерживания фильтра.

Частота разделяющая полосу пропускания и полосу задерживания называется частотой среза.

Читайте также:  Модели брюк с завышенной талией

В зависимости от того какие частоты пропускает фильтр, различают фильтры низких и верхних частот, а также полосовые и ре-электронные фильтры.

Любой фильтр можно характеризовать либо коэффициентом , либо вносимым затуханием .

Причем в полосе пропускания коэффициент передачи должен быть максимальным и постоянным, а в полосе задерживания – минимальным (нулевым).

Все реальные фильтры не обеспечивают нулевого коэффициента передачи в полосе задерживания и постоянного коэффициента передачи в полосе пропускания.

Существует несколько различных видов фильтров. Например: RC, LC, CL, кварцевые, пьезоэлектрические, электромеханические и др.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10830 — | 7386 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

В статье расскажем что такое колебательный контур. Последовательный и параллельный колебательный контур.

Колебательный контур — устройство или электрическая цепь, содержащее необходимые радиоэлектронные элементы для создания электромагнитных колебаний. Разделяется на два типа в зависимости от соединения элементов: последовательный и параллельный.

Основная радиоэлементная база колебательного контура: Конденсатор, источник питания и катушка индуктивности.

Последовательный колебательный контур

Последовательный колебательный контур является простейшей резонансной (колебательной) цепью. Состоит последовательный колебательный контур, из последовательно включенных катушки индуктивности и конденсатора. При воздействии на такую цепь переменного (гармонического) напряжения, через катушку и конденсатор будет протекать переменный ток, величина которого вычисляется по закону Ома: I = U / ХΣ , где ХΣ — сумма реактивных сопротивлений последовательно включенных катушки и конденсатора (используется модуль суммы).

Для освежения памяти, вспомним как зависят реактивные сопротивления конденсатора и катушки индуктивности от частоты приложенного переменного напряжения. Для катушки индуктивности, эта зависимость будет иметь вид:

Из формулы видно, что при увеличении частоты, реактивное сопротивление катушки индуктивности увеличивается. Для конденсатора зависимость его реактивного сопротивления от частоты будет выглядеть следующим образом:

В отличии от индуктивности, у конденсатора всё происходит наоборот — при увеличении частоты, реактивное сопротивление уменьшается. На следующем рисунке графически представлены зависимости реактивных сопротивлений катушки XL и конденсатора ХC от циклической (круговой) частоты ω, а также график зависимости от частоты ω их алгебраической суммы ХΣ. График, по сути, показывает зависимость от частоты общего реактивного сопротивления последовательного колебательного контура.

Из графика видно, что на некоторой частоте ω=ωр , на которой реактивные сопротивления катушки и конденсатора равны по модулю (равны по значению, но противоположны по знаку), общее сопротивление цепи обращается в ноль. На этой частоте в цепи наблюдается максимум тока, который ограничен только омическими потерями в катушке индуктивности (т.е. активным сопротивлением провода обмотки катушки) и внутренним сопротивлением источника тока (генератора). Такую частоту, при которой наблюдается рассмотренное явление, называемое в физике резонансом, называют резонансной частотой или собственной частотой колебаний цепи. Также из графика видно, что на частотах, ниже частоты резонанса реактивное сопротивление последовательного колебательного контура носит емкостной характер, а на более высоких частотах — индуктивный. Что касается самой резонансной частоты, то она может быть вычислена при помощи формулы Томсона, которую мы можем вывести из формул реактивных сопротивлений катушки индуктивности и конденсатора, приравняв их реактивные сопротивления друг к другу:

На рисунке справа, изображена эквивалентная схема последовательного резонансного контура с учетом омических потерь R, подключенного к идеальному генератору гармонического напряжения с амплитудой U. Полное сопротивление (импеданс) такой цепи определяется: Z = √(R 2 +XΣ 2 ), где XΣ = ω L-1/ωC. На резонансной частоте, когда величины реактивных сопротивлений катушки XL = ωL и конденсатора ХС= 1/ωС равны по модулю, величина XΣ обращается в нуль (следовательно, сопротивление цепи чисто активное), а ток в цепи определятся отношением амплитуды напряжения генератора к сопротивлению омических потерь: I= U/R. При этом на катушке и на конденсаторе, в которых запасена реактивная электрическая энергия, падает одинаковое напряжение UL = UС = IXL = IXС.

На любой другой частоте, отличной от резонансной, напряжения на катушке и конденсаторе неодинаковы — они определяются амплитудой тока в цепи и величинами модулей реактивных сопротивлений XL и XС.Поэтому резонанс в последовательном колебательном контуре принято называть резонансом напряжений. Резонансной частотой контура называют такую частоту, на которой сопротивление контура имеет чисто активный (резистивный) характер. Условие резонанса — это равенство величин реактивных сопротивлений катушки индуктивности и ёмкости.

Одними из наиболее важных параметров колебательного контура (кроме, разумеется, резонансной частоты) являются его характеристическое (или волновое) сопротивление ρ и добротность контура Q. Характеристическим (волновым) сопротивлением контура ρ называется величина реактивного сопротивления емкости и индуктивности контура на резонансной частоте: ρ = ХL = ХC при ω =ωр . Характеристическое сопротивление может быть вычислено следующим образом: ρ = √(L/C). Характеристическое сопротивление ρ является количественной мерой оценки энергии, запасенной реактивными элементами контура — катушкой (энергия магнитного поля) WL = (LI 2 )/2 и конденсатором (энергия электрического поля) WC=(CU 2 )/2. Отношение энергии, запасенной реактивными элементами контура, к энергии омических (резистивных) потерь за период принято называть добротностью Q контура, что в буквальном переводе с английского языка обозначает «качество».

Добротность колебательного контура — характеристика, определяющая амплитуду и ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки R.

Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:

где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

Величину, обратную добротности d = 1 / Q называют затуханием контура. Для определения добротности обычно пользуются формулой Q = ρ / R, где R-сопротивление омических потерь контура, характеризующее мощность резистивных (активных потерь) контура Р = I 2 R. Добротность реальных колебательных контуров, выполненных на дискретных катушках индуктивности и конденсаторах, составляет от нескольких единиц до сотни и более. Добротность различных колебательных систем, построенных на принципе пьезоэлектрических и других эффектов (например, кварцевые резонаторы) может достигать нескольких тысяч и более.

Частотные свойства различных цепей в технике принято оценивать с помощью амплитудно-частотных характеристик (АЧХ), при этом сами цепи рассматривают как четырёхполюсники. На рисунках ниже представлены два простейших четырехполюсника, содержащих последовательный колебательный контур и АЧХ этих цепей, которые приведены (показаны сплошными линями). По вертикальной оси графиков АЧХ отложена величина коэффициента передачи цепи по напряжению К, показывающая отношение выходного напряжения цепи к входному.

Для пассивных цепей (т.е. не содержащих усилительных элементов и источников энергии), величина К никогда не превышает единицу. Сопротивление переменному току изображённой на рисунке цепи, будет минимально при частоте воздействия, равной резонансной частоте контура. В этом случае коэффициент передачи цепи близок к единице (определяется омическими потерями в контуре). На частотах, сильно отличающихся от резонансной, сопротивление контура переменному току достаточно велико, а следовательно, и коэффициент передачи цепи будет падать практически до нуля.

Читайте также:  Выкройка капюшона для женщин на шубу

При резонансе в этой цепи, источник входного сигнала оказывается фактически замкнутым накоротко малым сопротивлением контура, благодаря чему коэффициент передачи такой цепи на резонансной частоте падает практически до нуля (опять-таки в силу наличия конечного сопротивления потерь). Наоборот, при частотах входного воздействия, значительно отстоящих от резонансной, коэффициент передачи цепи оказывается близким к единице. Свойство колебательного контура в значительной степени изменять коэффициент передачи на частотах, близких к резонансной, широко используется на практике, когда требуется выделить сигнал с конкретной частотой из множества ненужных сигналов, расположенных на других частотах. Так, в любом радиоприемнике при помощи колебательных цепей обеспечивается настройка на частоту нужной радиостанции. Свойство колебательного контура выделять из множества частот одну принято называть селективностью или избирательностью. При этом интенсивность изменения коэффициента передачи цепи при отстройке частоты воздействия от резонанса принято оценивать при помощи параметра, называемого полосой пропускания. За полосу пропускания принимается диапазон частот, в пределах которого уменьшение (или увеличение — в зависимости от вида цепи) коэффициента передачи относительно его значения на резонансной частоте, не превышает величины 0,7 (3дБ).

Пунктирными линиями на графиках показаны АЧХ точно таких же цепей, колебательные контуры которых имеют такие же резонансные частоты, как и для случая рассмотренного выше, но обладающие меньшей добротностью (например, катушка индуктивности намотана проводом, обладающим большим сопротивлением постоянному току). Как видно из рисунков, при этом расширяется полоса пропускания цепи и ухудшаются ее селективные (избирательные) свойства. Исходя из этого, при расчете и конструировании колебательных контуров нужно стремиться к повышению их добротности. Однако, в ряде случаев, добротность контура, наоборот, приходится занижать (например, включая последовательно с катушкой индуктивности резистор небольшой величины сопротивления), что позволяет избежать искажений широкополосных сигналов. Хотя, если на практике требуется выделить достаточно широкополосный сигнал, селективные цепи, как правило, строятся не на одиночных колебательных контурах, а на более сложных связанных (многоконтурных) колебательных системах, в т.ч. многозвенных фильтрах.

Параллельный колебательный контур

В различных радиотехнических устройствах наряду с последовательными колебательными контурами часто (даже чаще, чем последовательные) применяют параллельные колебательные контуры На рисунке приведена принципиальная схема параллельного колебательного контура. Здесь параллельно включены два реактивных элемента с разным характером реактивности Как известно, при параллельном включении элементов складывать их сопротивления нельзя — можно лишь складывать проводимости. На рисунке приведены графические зависимости реактивных проводимостей катушки индуктивности BL = 1/ωL, конденсатора ВC = -ωC, а также суммарной проводимости ВΣ, этих двух элементов, являющаяся реактивной проводимостью параллельного колебательного контура. Аналогично, как и для последовательного колебательного контура, имеется некоторая частота, называемая резонансной, на которой реактивные сопротивления (а значит и проводимости) катушки и конденсатора одинаковы. На этой частоте суммарная проводимость параллельного колебательного контура без потерь обращается в нуль. Это значит, что на этой частоте колебательный контур обладает бесконечно большим сопротивлением переменному току.

Если построить зависимость реактивного сопротивления контура от частоты XΣ = 1/BΣ, эта кривая, изображённая на следующем рисунке, в точке ω = ωр будет иметь разрыв второго рода. Сопротивление реального параллельного колебательного контура (т.е с потерями), разумеется, не равно бесконечности — оно тем меньше, чем больше омическое сопротивление потерь в контуре, т.е уменьшается прямо пропорционально уменьшению добротности контура. В целом, физический смысл понятий добротности, характеристического сопротивления и резонансной частоты колебательного контура, а также их расчетные формулы, справедливы как для последовательного, так и для параллельного колебательного контура.

Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно, добротность вычисляется:

где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

Рассмотрим цепь, состоящую из генератора гармонических колебаний и параллельного колебательного контура. В случае, когда частота колебаний генератора совпадает с резонансной частотой контура его индуктивная и емкостная ветви оказывают равное сопротивление переменному току, в следствие чего токи в ветвях контура будут одинаковыми. В этом случае говорят, что в цепи имеет место резонанс токов. Как и в случае последовательного колебательного контура, реактивности катушки и конденсатора компенсируют друг друга, и сопротивление контура протекающему через него току становится чисто активным (резистивным). Величина этого сопротивления, часто называемого в технике эквивалентным, определяется произведением добротности контура на его характеристическое сопротивление Rэкв = Q·ρ. На частотах, отличных от резонансной, сопротивление контура уменьшается и приобретает реактивный характер на более низких частотах — индуктивный (поскольку реактивное сопротивление индуктивности падает при уменьшении частоты), а на более высоких — наоборот, емкостной (т к реактивное сопротивление емкости падает с ростом частоты).

В процессе работы контура, дважды за период колебаний, происходит энергетический обмен между катушкой и конденсатором (смотри рисунок). Энергия поочередно накапливается, то в виде энергии электрического поля заряженного конденсатора, то в виде энергии магнитного поля катушки индуктивности. При этом в контуре протекает собственный контурный ток Iк, превосходящий по величине ток во внешней цепи I в Q раз. В случае идеального контура (без потерь), добротность которого теоретически бесконечна, величина контурного тока также будет бесконечно большой. Но на практике, такого не бывает. В любом случае, качество элементов контура, их паразитные характеристики, электрические цепи, служащие для подвода энергии и отбора энергии из контура, не позволят контурному току расти.

Рассмотрим, как зависят коэффициенты передачи четырехполюсников от частоты, при включении в них не последовательных колебательных контуров, а параллельных.

Четырехполюсник, изображенный на рисунке, на резонансной частоте контура представляет собой огромное сопротивление току, поэтому при ω=ωр его коэффициент передачи будет близок к нулю (с учетом омических потерь). На частотах, отличных от резонансной, сопротивление контура будет уменьшатся, а коэффициент передачи четырехполюсника — возрастать.

Для четырехполюсника, приведенного на рисунке выше, ситуация будет противоположной — на резонансной частоте контур будет представлять собой очень большое сопротивление и практически все входное напряжение поступит на выходные клеммы (т.е коэффициент передачи будет максимален и близок к единице). При значительном отличии частоты входного воздействия от резонансной частоты контура, источник сигнала, подключаемый к входным клеммам четырехполюсника, окажется практически закороченном накоротко, а коэффициент передачи будет близок к нулю.

Видео по теме: Колебательный контур

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

В прошлой статье мы с вами рассмотрели последовательный колебательный контур, так как все участвующие в нем радиоэлементы соединялись последовательно. В этой же статье мы рассмотрим параллельный колебательный контур, в котором катушка и конденсатор соединяются параллельно.

Читайте также:  Набор ключей для трактора

Параллельный колебательный контур на схеме

На схеме идеальный колебательный контур выглядит вот так:

В реальности у нас катушка обладает приличным сопротивлением потерь, так как намотана из провода, да и конденсатор тоже имеет некоторое сопротивление потерь. Потери в емкости очень малы и ими обычно пренебрегают. Поэтому оставим только одно сопротивление потерь катушки R. Тогда схема реального колебательного контура примет вот такой вид:

R – это сопротивление потерь контура, Ом

L – собственно сама индуктивность, Генри

С – собственно сама емкость, Фарад

Работа параллельного колебательного контура

Давайте подцепим к генератору частоты реальный параллельный колебательный контур

Что будет, если мы подадим на контур ток с частотой в ноль Герц, то есть постоянный ток? Он спокойно побежит через катушку и будет ограничиваться лишь сопротивлением потерь R самой катушки. Через конденсатор ток не побежит, потому что конденсатор не пропускает постоянный ток. Об это я писал еще в статье конденсатор в цепи постоянного и переменного тока.

Давайте тогда будем добавлять частоту. Итак, с увеличением частоты у нас конденсатор и катушка начнут оказывать реактивное сопротивление электрическому току.

Реактивное сопротивление катушки выражается по формуле

а конденсатора по формуле

Более подробно про это можно прочитать в этой статье.

Если плавно увеличивать частоту, то можно понять из формул, что в самом начале при плавном увеличении частоты конденсатор будет оказывать бОльшее сопротивление, чем катушка индуктивности. На какой-то частоте реактивные сопротивления катушки XL и конденсатора XC уравняются. Если далее увеличивать частоту, то уже катушка уже будет оказывать большее сопротивление, чем конденсатор.

Резонанс параллельного колебательного контура

Очень интересное свойство параллельного колебательного контура заключается в том, что при ХL = ХС у нас колебательный контур войдет в резонанс. При резонансе колебательный контур начнет оказывать большее сопротивление переменному электрическому току. Еще часто это сопротивление называют резонансным сопротивлением контура и оно выражается формулой:

Rрез – это сопротивление контура на резонансной частоте

L – собственно сама индуктивность катушки

C – собственно сама емкость конденсатора

R – сопротивление потерь катушки

Формула резонанса

Для параллельного колебательного контура также работает формула Томсона для резонансной частоты как и для последовательного колебательного контура:

F – это резонансная частота контура, Герцы

L – индуктивность катушки, Генри

С – емкость конденсатора, Фарады

Как найти резонанс на практике

Ладно, ближе к делу. Берем паяльник в руки и спаиваем катушку и конденсатор параллельно. Катушка на 22 мкГн, а конденсатор на 1000пФ.

Итак, реальная схема этого контура будет вот такая:

Для того, чтобы все показать наглядно и понятно, давайте добавим к контуру последовательно резистор на 1 КОм и соберем вот такую схему:

На генераторе мы будет менять частоту, а с клемм X1 и X2 мы будем снимать напряжение и смотреть его на осциллографе.

Нетрудно догадаться, что у нас сопротивление параллельного колебательного контура будет зависеть от частоты генератора, так как в этом колебательном контуре мы видим два радиоэлемента, чьи реактивные сопротивления напрямую зависит от частоты, поэтому заменим колебательный контур эквивалентным сопротивлением контура Rкон.

Упрощенная схема будет выглядеть вот так:

Интересно, на что похожа эта схема? Не на делитель ли напряжения? Именно! Итак, вспоминаем правило делителя напряжения: на меньшем сопротивлении падает меньшее напряжение, на бОльшем сопротивлении падает бОльшее напряжение. Какой вывод можно сделать применительно к нашему колебательному контуру? Да все просто: на резонансной частоте сопротивление Rкон будет максимальным, вследствие чего у нас на этом сопротивлении “упадет” бОльшее напряжение.

Начинаем наш опыт. Поднимаем частоту на генераторе, начиная с самых маленьких частот.

Как вы видите, на колебательном контуре “падает” малое напряжение, значит, по правилу делителя напряжения, можно сказать, что сейчас у контура малое сопротивление Rкон

Добавляем частоту. 11,4 Килогерца

Как вы видите, напряжение на контуре поднялось. Это значит, что сопротивление колебательного контура увеличилось.

Добавляем еще частоту. 50 Килогерц

Заметьте, напряжение на контуре повысилось еще больше. Значит его сопротивление еще больше увеличилось.

Обратите внимание на цену деления одного квадратика по вертикали, по сравнению с прошлым опытом. Там было 20мВ на один квадратик, а сейчас уже 500 мВ на один квадратик. Напряжение выросло, так как сопротивление колебательного контура стало еще больше.

И вот я поймал такую частоту, на которой получилось максимальное напряжение на колебательном контуре. Обратите внимание на цену деления по вертикали. Она равняется двум Вольтам.

Дальнейшее увеличение частоты приводит к тому, что напряжение начинает падать:

Снова добавляем частоту и видим, что напряжение стало еще меньше:

Разбираем частоту резонанса

Давайте более подробно рассмотрим эту осциллограмму, когда у нас было максимальное напряжение с контура.

Что здесь у нас произошло?

Так как на этой частоте был всплеск напряжения, следовательно, на этой частоте параллельный колебательный контур имел самое высокое сопротивление Rкон. На этой частоте ХL = ХС. Потом с ростом частоты сопротивление контура снова упало. Это и есть то самое резонансное сопротивление контура, которое выражается формулой:

Резонанс токов

Итак, давайте допустим, мы вогнали наш колебательный контур в резонанс:

Чему будет равняться резонансный ток Iрез ? Считаем по закону Ома:

Но самый прикол в том, что у нас при резонансе в контуре появляется свой собственный контурный ток Iкон , который не выходит за пределы контура и остается только в самом контуре! Так как с математикой у меня туго, поэтому я не буду приводить различные математические выкладки с производными и комплексными числами и объяснять откуда берется контурный ток при резонансе. Именно поэтому резонанс параллельного колебательного контура называется резонансом токов.

Добротность

Кстати, этот контурный ток будет намного больше, чем ток, который проходит через контур. И знаете во сколько раз? Правильно, в Q раз. Q – это и есть добротность! В параллельном колебательном контуре она показывает во сколько раз сила тока в контуре Iкон больше сила тока в общей цепи Iрез

Если сюда еще прилепить сопротивление потерь, то формула примет вот такой вид:

R – сопротивление потерь на катушке, Ом

Заключение

Ну и в заключении хочу добавить, что параллельный колебательный контур применяется в радиоприемном оборудовании, где надо выделить частоту какой-либо станции. Также с помощью колебательного контура можно построить различные резонансные фильтры, которые бы выделяли нужную нам частоту, а другие частоты пропускали бы через себя, что в принципе мы и делали в нашем опыте.

Ссылка на основную публикацию
Adblock detector