Удвоитель напряжения латура делона гренашера

Удвоитель напряжения латура делона гренашера

Какие бывают выпрямители?

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель.

Однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети — 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 — 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой.

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Как видим, на выходе выпрямителя уже в два раза меньше "провалов" напряжения — тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов — общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Взгляните.

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage dropVF). Для обычных выпрямительных диодов оно может быть 1 — 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Читайте также:  Газовая колонка не включается при включении воды

Большой интерес вызывает выпрямитель с удвоением напряжения.

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор — смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители.

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с книгой "Полупроводниковые выпрямители".

Читайте также:  Бетон из пгс для фундамента пропорции

Умножитель напряжения — схема выпрямителя особого типа, амплитуда напряжение на выходе которой теоретически в целое число раз выше, чем на входе. То есть, с помощью удвоителя напряжения можно получить 200 В постоянного тока из 100 В переменного тока источника, а с помощью умножителя на четыре — 400 В постоянного. Это если не учитывать падение напряжения на диодах (0,7В на каждом).

В реальных схемах любая нагрузка будет уменьшать полученное напряжение. Умножитель содержит в себе конденсаторы и диоды. Нагрузочная способность умножителя пропорциональна частоте, величине емкости входящих в его состав конденсаторов и обратно пропорциональна числу звеньев.

А теперь, к Вашему вниманию — "экспонаты" коллекции:

  • Удвоитель напряжения Латура-Делона-Гренашера

Особенности: хорошая нагрузочная способность.

Несимметричный умножитель напряжения (Кокрофта-Уолтона)

Особенности: универсальность, низкая нагрузочная способность.

Генераторы Кокрофта-Уолтона применяются во многих областях техники, в частности, в лазерных системах, в источниках высокого напряжения, в системах рентгеновского излучения, подсветке жидкокристаллических экранов, лампах бегущей волны, ионных насосах, электростатических системах, ионизаторах воздуха, ускорителях частиц, копировальных аппаратах, осциллографах, телевизорах и во многих других устройствах, где необходимо одновременно высокое напряжение и постоянный ток.

  • Утроитель, 1-й вариант

Особенности: хорошая нагрузочная способность.

Утроитель, 2-й вариант

Особенности: хорошая нагрузочная способность.

Утроитель, 3-й вариант

Особенности: хорошая нагрузочная способность.

Умножитель на 4, 1-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность.

Умножитель на 4, 2-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность.

Умножитель на 4, 3-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

Умножитель на 5, 1-й вариант

Особенности: хорошая нагрузочная способность.

Умножитель на 6, 1-й вариант

Особенности: хорошая нагрузочная способность.

Умножитель на 6, 2-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

Умножитель на 8, 1-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность.

Умножитель на 8, 2-й вариант

Особенности: симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

Умножитель напряжения Шенкеля – Вилларда

Особенности: симметричная схема, превосходная нагрузочная способность, ступенчатое увеличение напряжения на каждом звене.

Умножитель со ступенчатой нагрузочной способностью

Особенности: нагрузочная характеристика имеет две области — область низкой мощности – в диапазоне выходных напряжений от 2U до U и область повышенной мощности – при выходном напряжении ниже U.

Выпрямитель с вольтодобавкой

Особенности: наличие дополнительного маломощного выхода с удвоенным напряжением питания.

Умножитель из диодных мостов

Особенности: хорошая нагрузочная способность. Одна из классических схем умножения напряжения в высоковольтных источниках питания для физических экспериментов. На рисунке изображен удвоитель напряжения, но число каскадов в умножителе может быть увеличено.

Автор: Павел (Admin)

Принципы построения и работы схем умножения напряжения.

В последнее время радиолюбители все чаще и чаще интересуются схемами питания построенным по принципу умножения напряжения. Причин этому можно назвать много, одни из самых главных – появление на рынке малогабаритных конденсаторов большой емкости и резкое удорожание медного провода, использовавшегося при намотке трансформаторов. Немаловажно и то, что схемы с умножением напряжения позволяют значительно снизить вес и габариты аппаратуры. Однако многие попытки выбора радиолюбителями таких схем заканчиваются неудачей, поскольку не соблюдаются несколько непременных условий для достаточно надежной и качественной работы таких, казалось бы, простых схем. Для того чтобы понять, как правильно выбрать схему и элементы умножителя, рассмотрим принципы работы таких устройств.

Схемы умножителей напряжения разделяются на симметричные и несимметричные. Для начала рассмотрим принцип работы и построения несимметричных схем. Несимметричные схемы умножителей подразделяются на два типа: Схемы умножителей первого рода и схемы умножителей второго рода.

Схема умножения первого рода представлена на рисунке.

В полупериод напряжения, когда в точке “А” имеется отрицательный потенциал относительно точки “F” конденсатор С1 будет заряжаться по цепи “F” -VD1 –“B” — С1 –“A” до амплитудного значения напряжения на входе схемы ( в точках “А” –“F”). Одновременно с зарядом С1 будет также заряжаться конденсатор С3 по цепи “F” –VD1 –“B” – VD2 – “C” — VD3 –“D” – C3 – “A” также до амплитудного значения напряжения на входе схемы. Также будут заряжаться и другие конденсаторы схемы умножения, которые могут быть и которые подключены одним выводом к точке “А”. Обратим внимание на то, что все эти конденсаторы заряжаются по цепочке последовательно соединенных диодов. Через диод VD1 течет ток заряда конденсаторов всех ступеней умножения, через диоды VD2, VD3 и далее – ток заряда всех остальных конденсаторов, подключенных одним выводом к точке “А”, кроме первого. Таким образом, через диоды в первоначальный момент проходят значительные токи заряда емкостей. Это необходимо учесть при выборе элементов для схемы умножения. Конденсаторы С2 и все которые могут быть в других ступенях и подключаются одним выводом к точке “F” в этот полупериод не заряжаются, поскольку оказываются шунтироваными парами диодов VD1-VD2, VD3-VD4 и далее VD(N)-VD(N+1).

Читайте также:  Огурцы подвязка формирование огуречной плети

С началом другого полупериода положительный потенциал будет в точке “А”. Поскольку конденсатор С1 уже заряжен до такого же потенциала, как максимальный Uo, то он оказываются включенным последовательно с источником питания и будут разряжаться по цепи “В” — VD2 –“С” — С2 –“F” – Источник – “А” . Поскольку конденсатор С2 был разряжен, то теперь он зарядится почти до удвоенного амплитудного напряжения Uo. “Почти” потому, что С1 за этот небольшой промежуток времени отдаст часть своего заряда конденсатору С2.

Если емкость конденсатора С1 намного больше емкости конденсатора С2, то С2 зарядится до удвоенного амплитудного значения напряжения Uo. Если емкости этих конденсаторов равны, то все равно, через несколько периодов напряжение на конденсаторе С2 достигнет удвоенного Uo. Аналогично, по цепи “D” –VD(N) – “E” — C(N) – “F” – Источник – “А” произойдет заряд конденсатора С(N) до удвоенного напряжения Uo.

В следующий полупериод напряжения конденсатор С2, заряженный до удвоеннного напряжения Uo, будет включен последовательно и по цепи “С” – VD3 –“D”- C3 – “А” – Источник – “F” зарядит конденсатор С3 почти до утроенного напряжения Uo. А конденсатор С1 будет подзаряжен до напряжения Uo.

В следующий полупериод конденсатор С2 будет заряжен так же как уже было описано, до удвоенного напряжения, а конденсатор С(N) будет заряжен по цепи D – VD(N) – E – C(N) –F – Источник – А – С3. Причем за счет утроенного напряжения на конденсаторе С3 и напряжения на входе конденсатор С(N) зарядится до учетверенного Uo. Если наращивать ступени умножения и дальше, их работа ничем не будет отличаться от работы первых стtпеней умножения. Следует отметить, что в один из полупериодов будут заряжаться конденсаторы, подключенные одним выводом к точке “А”, а в другой – конденсаторы, подключенные одним выводом к точке “F”, поэтому частота пульсаций на выходе схемы умножения первого рода равна частоте питающего напряжения.

Минимально допустимую величину конденсатора на выходе схемы умножения С(N) можно посчитать, исходя из заданного уровня пульсаций выпрямленного напряжения. Для начала определим сопротивление нагрузки:

Для питания анодной цепи усилителя мощности на 3-х ГУ-50 зададим: напряжение на выходе умножителя 1200 Вольт при токе 400 мА.

Подставляя данные в формулу, получим сопротивление нагрузки выпрямителя Rн = 3 Ком.

(Далее все практические расчеты будут сделаны именно для усилителя этого типа.)

Теперь определим емкость конденсатора на выходе схемы умножения.

Для усилителей мощности КВ радиостанций, работающих в телеграфном режиме, коэффициент пульсаций выбирается в пределах 0,5 – 3,0 % Для передатчиков ,работающих в SSB коэффициент пульсаций должен быть значительно ниже. Выберем Кп = 0, 1% , тогда: С(n) = 19 мкф (выберем 20 мкф)

Для того, чтобы получить как можно более пологую статическую характеристику важно соблюдать определенные пропорции в емкостях конденсаторов, которые обеспечат равенство энергий, накапливаемых каждым конденсатором при работе на реальную нагрузку. Наилучшие результаты дает ряд емкостей, для которого:

Где: C(N) –емкость конкретного конденсатора, С(n) – емкость конденсатора на выходе схемы, М – коэффициент увеличения емкости, определяемый по таблице:

Ссылка на основную публикацию
Adblock detector