Температура кипения 134а фреона

Температура кипения 134а фреона

Современные типы фреонов

В нынешнее время, вопрос сохранения атмосферы набирает больших оборотов. Из-за этого, ведущие страны уже отказались от эксплуатации хладагента R22, поскольку он разрушает озоновый слой. Судьбу данного фреона уже постиг его предшественник R12, который полностью исключили из области холодильного оборудования.

Температура фреона, °C:
Давление, bar:
Фреон:

t °C R22 R12 R134 R404a R502 R407c R717 R410a R507a R600 R23 R290 R142b R406a R409A
-70 -0,81 -0,88 -0,92 -0,74 -0,72 -0,89 -0,65 -0,72 0,94
-65 -0,74 -0,83 -0,88 -0,63 -0,62 -0,84 -0,51 -0,61 1,48 -0,94
-60 -0,63 -0,77 -0,84 -0,52 -0,51 -0,74 -0,78 -0,36 -0,50 2,12 -0,9
-55 -0,49 -0,69 -0,77 -0,35 -0,35 -0,63 -0,69 -0,22 -0,32 2,89 -0,83
-50 -0,35 -0,61 -0,70 -0,18 -0,19 -0,52 -0,59 0,08 -0,14 3,8 -0,8
-45 -0,2 -0,49 -0,59 -0,11 -0,14 -0,34 -0,44 0,25 -0,02 4,86 -0,66
-40 0,05 -0,36 -0,48 0,32 0,30 -0,16 -0,28 0,73 0,39 -0,71 6,09 0,12 -0,62
-35 0,25 -0,18 -0,32 0,68 0,64 -0,06 -0,24 1,22 0,77 -0,62 7,51 0,37 -0,4
-30 0,64 0,00 -0,15 1,04 0,98 0,37 0,19 1,71 1,15 -0,53 9,12 0,68 -0,2
-25 1,05 0,26 -0,06 1,53 1,45 0,75 0,55 2,35 1,67 -0,38 10,96 1,03 -0,1 0,06
-20 1,46 0,51 0,33 2,02 1,91 1,12 0,90 2,98 2,18 -0,27 13,04 1,44 0,2 0,32
-15 2,01 0,85 0,67 2,67 2,53 1,64 1,41 3,85 2,86 -0,18 15,37 1,91 0,4 0,62
-10 2,55 1,19 1,01 3,32 3,14 2,16 1,91 4,72 3,54 0,09 17,96 2,45 0,8 0,98
-5 3,27 1,64 1,47 4,18 3,94 2,87 2,6 5,85 4,42 0,33 20,85 3,06 0,22 1,1 1,4
3,98 2,08 1,93 5,03 4,73 3,57 3,29 6,98 5,29 0,57 24 3,75 0,47 1,6 1,88
5 4,89 2,66 2,54 6,11 5,73 4,43 4,22 8,37 6,40 0,89 27,54 4,52 0,75 2,1 2,43
10 5,80 3,23 3,14 7,18 6,73 5,28 5,15 9,76 7,51 1,21 31,37 5,38 1,08 2,6 3,07
15 6,95 3,95 3,93 8,52 7,97 6,46 6,36 11,56 8,88 1,62 35,56 6,33 1,46 3,3 3,78
20 8,10 4,67 4,72 9,86 9,20 7,63 7,57 13,35 10,25 2,02 40,11 7,39 1,9 4,0 4,59
25 9,5 5,39 5,71 11,5 10,70 9,14 9,12 15,00 11,94 2,54 45,03 8,55 2,38 4,8 5,5
30 10,90 6,45 6,70 13,14 12,19 10,65 10,67 16,65 13,63 3,05 9,82 2,94 5,7 6,51
35 12,60 7,53 7,93 15,13 13,98 12,45 12,61 19,78 15,69 3,69 11,21 3,55 6,7 7,64
40 14,30 8,60 9,16 17,11 15,77 14,25 14,55 22,90 17,74 4,32 12,73 4,25 7,8 8,88
45 16,3 10,25 10,67 19,51 17,89 16,48 16,94 26,2 20,25 5,09 14,38 5,02 9,1 10,26
50 18,30 11,90 12,18 21,90 20,01 18,70 19,33 29,50 22,75 5,86 16,16 5,87 10,4 11,76
55 20,75 13,08 14,00 24,76 22,51 21,45 22,24 25,80 6,79 18,08 6,81 11,9 13,41
60 23,20 14,25 15,81 27,62 25,01 24,20 25,14 28,85 7,72 20,14 7,85 13,6 15,2
70 29,00 17,85 20,16 30,92 32,12 9,91 24,72 10,23 17,3 19,26
80 22,04 25,32 40,40 29,94 13,07 21,5 23,99
90 26,88 31,43 50,14 35,82 16,4 29,43

Современные озонобезопасные фреоны являются уникальными смесями, молекулярная структура которых является продуктом взаимодействия нескольких типов веществ.

На данный момент, R134A и R-410A — это самые распространенные типы безопасных фреонов. Первый изначально разрабатывался с целью функционального замещения R22.

Однако, получить одинаковую температуру испарения всех компонентов к сожалению не получилось. Вследствие этого, при критической потере вещества приходится совершать полную замену фреона в холодильной системе, поскольку естественные потери не выходит полностью восполнить непосредственной дозаправкой хладагента.

R-410A — отличается от своего аналога тем, что он демонстрирует одинаковые показатели испарения компонентов. Однако, его использование усугубляется тем, что он обладает вдвое большей температурой кипения. Из-за этого, рабочее давление холодильного оборудования увеличилось до отметки в 28 атмосфер. Наличие прямо пропорциональной зависимости уровня давления от температуры хладагента исключает возможность эксплуатации данного вещества в системах кондиционирования, которые разрабатывались под R22. При использовании R-410A в современных моделях, необходимо эксплуатировать более прочные материалы изготовления, а также производить увеличение общего показателя мощности в холодильных компрессорах.

Для более полного представления о технологических и эксплуатационных свойствах фреона, необходимо ознакомиться с его строением на молекулярном уровне. Данная информация позволит вам разбираться в технологических нюансах, связанных с эксплуатацией фреона в холодильных системах.

Фреон: физические свойства вещества

Молекулярный состав играет основную роль, от которой зависит температура кипения фреона находится. Следует отметить, что возникновение большего уровня давления в холодильной системе, вместе с большим количеством вещества, перешедшего в газообразное состояние зависит только от значения температуры кипения.

Читайте также:  Полуавтоматическая сварка без газа

Она находится со всеми перечисленными показателями в пропорциональной связи: с ее ростом, остальные элементы будут демонстрировать увеличенные значения.

Не для кого не секрет, что наличие высокого давления подразумевает завышенные требования к конструкционным и техническим показателям холодильной установки: качеству шлангов,труб, показателю мощности компрессора, уровню прочности трассы прокачки фреона, материалу изготовления и т.д.

Стоит также отметить, что в странах СНГ, R22 является самым распространенным типом фреона. Большинство ведущих государств перешли на более озонобезопасные вещества, однако наши регионы по прежнему эксплуатируют данный вид хладагента в холодильном оборудовании.

В том случае, если представить R22 в виде условной единицы отсчета, то можно увидеть, что 16-ти атмосфер полностью хватит для поддержания нормальных рабочих условий системы охлаждения. Опираясь на полученную информацию, специализированные компании-производители разрабатывали конструкции многих моделей кондиционеров, холодильников, компрессоров и т.д. Именно зависимость уровня давления от наличия температуры хладагента и послужила основным ориентиром для реализации всех проектов по созданию холодильных систем.

На протяжении всего пути развития холодильных агрегатов, появилось порядка 40 разнообразных типов фреонов, при этом, каждое вещество обладает различными физическими свойствами (температура конденсации и собственная температура кипения). Следует отметить, что давление внутри охладительного оборудования возникает в тот момент, когда фреон изначально приобретает, а затем полностью утрачивает состояние газа. Зависимость температуры кипения и последующей степени конденсации, можно пронаблюдать в следующем графике:

Указано относительное давление
по данным Du Pont de Nemours
по данным Elf Atochem
по
по данным «Учебник по холодильной технике» Польман

Онлайн калькулятор

Компания Domxoloda предоставляет онлайн калькулятор, который осуществляет расчет давления, в зависимости от типа фреона и его температуры. Для этого вам необходимо нажать на соответствующий вид хладагента и с помощью ползунка выставить нужное значение температуры фреона. Благодаря функциональным свойствам нашего онлайн калькулятора, вы сэкономите свое время на подсчет необходимых параметров, опираясь на которые вы будете совершать заправку собственной холодильной системы.

(фреон R134a, хладон 134a, R134a, HFC 134a)

Основные характеристики

  • Относительная молекулярная масса 102,031
  • Температура плавления, ℃ -101
  • Температура кипения, ℃ -26,5
  • Критическая температура, ℃ 101,5
  • Критическое давление, МПа 4,06
  • Критическая плотность, кг/м 3 538,5

Физические свойства фреон R134a

Давление пара, плотность и поверхностное натяжение на линии равновесия жидкости – пар

Калорические свойства на линии равновесия жидкость – пар

Вязкость и теплопроводность на линии равновесия жидкость – пар

Другие физические свойства

  • Теплота образования стандартная ΔH° 298 , кДж/моль -923
  • Теплота испарения при температуре кипения, кДж/моль 21,26
  • Дипольный момент, Кл·м 6,865·10 -3 (2,058 D )

Растворимость

Массовая растворимость 1,1,1,2-тетрафторэтан в воде при 20 ℃ составляет 0,15%, а воды в 1,1,1,2-тетрафторэтане – 0,11%.

Молярная растворимость 1,1,1,2-тетрафторэтана в диметиловом эфире 1,8-октандиола при 35 ℃ и 0,793 МПа составляет 61,3%.

Экологические характеристики и пожароопасность

ODP=0; HGWP=0,28; GWP=1300. ПДК р.з не установлена. Класс опасности 4.

При соприкосновении с пламенем и горячими поверхностями разлагается с образование высокотоксичных продуктов.

Трудногорючий газ. Концентрационные пределы распространения пламени в воздухе отсутствуют.

Коррозийное действие на металлы и неметаллы фреона R134a

Металлические материалы, стойкие при температуре до 150 ℃: стали 20Х13, 14Х17Н2, 08Х21Н6М2Т, 12Х18Н10Т, 10Х17Н13М2Т, 06ХН28МДТ, никель Н2 и его сплавы ХН78Т, НМЖМц 28-2,5-1,5, алюминий АД1, титан ВТ1 (скорость коррозии не более 0,001 мм/год); сталь Ст3, медь М1, бронза Бр.АМц, латунь Л62 (скорость коррозии 0,02-0,005 мм/год). Присутствие влаги не влияет на коррозионную стойкость.

Неметаллические материалы, стойкие при 50℃ (набухание не более 15% по массе): фторопласт 4, полиамид, полиэтилен, полипропилен, парониты ПМБ1, ТИИР, резины на основе этилен-пропиленового и бутадиен-нитрильного каучуков.

Методы синтеза

1. Фторирование 1,1,1-трифторхлорэтана суспензией фторида щелочного металла во фтороводородной кислоте при повышенной температуре:

CF 3 CClH 2 O+HF → KF;H 2 O;200-300℃ → CF 2 CFH 2 +HCl.

2. Газофазное каталитическое фторирование 1,1,1-трифторхлорэтана фтороводородом в присутствии кислорода при повышенной температуре:

C F 3 CCl H 2 O+HF → O 2 ;Cr F 3 ;400℃ → C F 3 CF H 2 +HCl.

3. Газофазное каталитическое гидрофторирование трифторэтилена при повышенной температуре:

C F 2 =CFH+HF → C r 2 O 3 ;350℃ → C F 3 CF H 2 .

4. Газофазное каталитическое гидрирование 1,1,1,2-тетрафторхлорэтана водородом на палладиевом катализаторе при повышенной температуре:

CF 3 CFClH+H 2 → Pd/C;350-420℃ → CF 3 CFH 2 +HCl.

Промышленное производство хладагента R134a

В промышленности получают газофазным каталитическим гидрофторированием трихлорэтилена при высокой температуре в две стадии.

Процесс получения состоит из следующих основных стадий:

  1. Синтез 1,1,1-трифторхлорэтана из трихлорэтилена;
  2. Синтез 1,1,1,2-тетрафторэтана из 1,1,1-трифторхлорэтана;
  3. Выделение газообразного хлороводорода;
  4. Выделение сырца 1,1,1,2-тетрафторэтана;
  5. Очистка сырца от непредельных соединений каталитическим гидрофторированием;
  6. Отмывка; нейтрализация и осушка сырца;
  7. Очистка сырца от непредельных соединений каталитическим окислением;
  8. Абсорбционная очистка сырца;
  9. Выделение товарного 1,1,1,2-тетрафторэтана ректификацией.

Технологическая схема

Трихлорэтилен и фтороводород подают в реакторы фторирования. Процесс проводят при температуре 340-400 ℃ и давлении 0,5-1 МПа. Из продуктов синтеза выделяют газообразный хлороводород, отделяют высококипящие продукты, рециркулируемые в реактор. Очистку сырца от непредельных соединений осуществляют каталитическим гидрофторированием, от фтороводорода – водной отмывкой и нейтрализацией в скруббере, орошаемом 10%-м раствором едкого натра, от непредельных соединений – каталитическим окислением. После осушки в колонне с твердым адсорбентом сырец освобождают от инертов в отдувочной колонне, от низкокипящих примесей и окончательно очищают.

Технические требования к готовому продукту

  • Массовая доля 1,1,1,2-тетрафторэтана, %, не менее 99,9
  • Массовая доля воздуха или азота, %, не более 0,02
  • Суммарная массовая доля примисей ненасыщенных органических соединений, %, не более 0,001
  • Суммарная массовая доля примесей хладонов, %, не более 0,07
  • Кислотность в пересчете на фтористоводородную кислоту в массовых долях, %, не более 10 -4
  • Массовая доля воды, %, не более 0,001
Читайте также:  Микросхема под микроскопом фото

Транспортировка и хранение фреона R134a

Заливают в стальные баллоны вместимостью от 0,4 до 50 дм 3 , рассчитанные на давление 9,8 и 14,7 МПа. Коэффициент заполнения 0,9 кг продукта на 1 дм 3 вместимости баллона. Чаще всего фасуется в стальные баллоны по 13,6 кг.

Перевозят любым видом транспорта. Для перевозки воздушным и морским транспортом требуется специальное разрешение — мультимодальная декларация. Хранят в складских помещениях при температуре не выше 50 ℃. Срок годности фреона не ограничен. Баллон находится под давление и при длительном хранении существует риск улетучивания хладона через запорный вентиль.

Применение фреона R134a

Хладагент, пропеллент и вспениватель для получения пенопластов. Широкое применение фреон нашел в системах кондиционирования автомобилей и охлаждающих системах.

Скачать MSDS (англ.) .PDF

ИСТОЧНИК: "Промышленные фторорганические продукты", 2-е издание, переработанное и дополненное

  • Раскачка "пустых" спецконтрейнеров с остатками хладонов "под ноль" — экономия до 10% хладона.
  • Рекуперация однокомпонентных фреонов, изобутана при ремонте оборудования.
  • Закачка фреонов под высоким давлением без поддавливания инертными газами.
  • Оборудование для утилизации вышедших из обращения фреонов, галонов, пожаротушащих хладонов.
  • Переход с фреонов на углекислоту CO2.

мы поможем Вам решить, где поставить запятую

Распространенные названия вещества: фреон 134a, хладон 134a, тетрафторэтан, R-134a, хладон группы ГФУ, HFC-134A

Бесцветный газ, негорючий и нетоксичный во всем диапазоне температур

Рабочее вещество длительного действия (ГФУ), охладитель до средних температур, кондиционирование воздуха. Требует полиолэфирных смазок. Производительность примерно на 8% ниже, чем у R-12 (при охлажд.). Имеет хороший холодильный коэффициент и более высокое давление конденсации, чем у R-12. Хладагент, пропеллент и вспениватель для получения пенопластов.

При подборе оборудования Haskel для подачи фреонов наибольшее внимание следует уделить фазовому состоянию вещества на входе в насос/компрессор. Ниже приведен график зависимости давления конденсации от температуры хладагента:

Зависимость давления конденсации от температуры фреона R-134a

  • I — Гарантированно жидкая фаза. Область применения жидкостных насосов с пневматическим приводом Haskel.
    Haskel liquid pumps area
  • II — Газовая фаза. Область применения дожимных компрессоров с пневматическим приводом Haske.l
    Haskel gas boosters area
  • III — Газовая фаза при давлениях 1,25 — 5 бар изб. Область применения насос-компрессоров для хладонов с пневматическим приводом Haskel.
    Haskel pumps for refrigerants area
  • IV — Газовая фаза при давлениях ниже 1,25 бар изб. Применение оборудования Haskel неэффективно либо невозможно.
    Haskel equipment not applicable
  • V — Граничная область — ограничена снизу кривой фазового перехода (изб. давление), сверху линией, лежащей выше кривой фазового перехода на 2 бар (верхнее ограничение — условное).
    Boundary area

Области применения показаны для условий на всасывании. При подборе оборудования безусловно необходимо учитывать требуемое давление нагнетания хладагента, требуемый расход. Разграничение по областям применения весьма условно.

Общий вид Описание Области применения Жидкостные насосы с пневматическим приводом Пожача жидкой фазы.
Перекачка значительных объемов фреонов (до 50 л/мин).
Подача фреонов под давлением в процесс для питания экструдеров (до 2000 бар).
Заправка пожаротушащими фреонами, галонами, углекислотой огнетушителей, систем пожаротушения.
Заправка фреонами баллонов, спецконтейнеров.
Минимальная температура перекачиваемой жидкости -70С.
Сотни моделей, тысячи модификаций для подачи хладонов, пожаротушащих фреонов, галонов, углекислоты CO2, изобутана, сжиженных углеводородов. Насосные установки для подачи жидкой фазы фреонов Изготавливаются в переносном и стационарном исполнениях.
Могут комплектоваться системой автоматического управления, хотя в большинстве случаев сложная автоматика не требуется.
Установки с ручным управлением с высокой точностью выполняют задачи поддержания постоянного давления фреона на нагнетании, заправки баллонов фреонами до требуемого (предустановленного) давления.
До десятка стандартных решений, бесконечное множество решений под заказ. Компрессоры и насос-компрессоры для подачи жидкой и газовой фазы фреонов Могут перекачивать как 100% жидкую, так и 100% газовую фазу.
Производительность по газу снижается относительно производительности по жидкости в 100 и более раз.
Основные области применения:
Раскачка остатков фреона (минимальное экономически целесообразное давление раскачки 1,25 бар изб.)
Сжижение фреонов давлением.
Подача смесей газов.
Нескольо специальных моделей в различных исполнениях для подачи практически любых современных и применяемых ранее сжиженных газов.
Десятки моделей, сотни модификаций для решения подачи различных сред, в том числе компримированных и сжиженных газов для решения различных задач. Установки для подачи фреонов в жидкой и газовой фазе Различные решения начиная от компактных установок с ручным управлением, заканчивая сложными автоматизированными системами.
Установки раскачки фреонов, установки сжижения газов давлением, установки подачи хладонов, изобутана, сжиженных углеводородов, установки подготовки смесей газов.
До десятка стандартных решений, бесконечное множество решений под заказ.

Область I — подача жидкого фреона.

Область I условно лежит на 2 бара выше линии конденсации фреона. Именно эти условия на всасывании зачастую требуют производители насосов высокого давления.

В этой области могут работать как жидкостные насосы, так и дожимные компрессоры и насос-компрессоры Haskel.

Наиболее эффективна работа жидкостых насосов, так как фреон в процессе перекачки насосом не претерпевает фазовых переходов а находится строго в жидкой фазе — в противном случае насос качать не будет.

Читайте также:  Бело желтая ванная комната фото

Дожимные компрессоры и насос-компрессоры на цикле всасывания стремятся перевести жидкость в газовую фазу, на цикле нагнетания — переводят обратно в жидкую фазу. В результате компрессоры подают мультифазную среду, что значительно снижает эффективность.

Область II и Область III — подача газообразного фреона.

В этих областях могут работать исключительно дожимные компрессоры и насос-компрессоры.

Дожимные компрессоры следует применять при давлениях на входе не ниже 5 бар — условное ограничение.

Применение насос-компрессоров для хладонов эффективно до давлений 0,25 бар. Поэтому именно это оборудование специалисты завода рекомендуют для раскачки хладонов "под ноль".

Область V — Граничная область.

В 90% случаев приходится работать именно в этой области, так как сжиженный газ, не поддавленный инородным газом, находится в состоянии кипения.

Давление газа соответствует давлению насыщенных паров при данной температуре, кавитационный запас на уровне границы раздела фаз строго равен НУЛЮ.

Располагаемый кавитационный запас системы на входном патрубке насоса определяется высотой столба жидкости относительно входного патрубка минус потери на входном трубопроводе.

В этой области допускается как применение жидкостных насосов так и компрессоров, однако применение жидкостных насосов в этой области связано с преодолением определенных трудностей.

Типичная проблема при эксплуатации ЖИДКОСТНЫХ НАСОСОВ при подаче сжиженных газов — насос не качает, срывает поток.

Проблемы возникают по причине ошибок в проектировании (редкие, но очень болезненные случаи), из-за ошибок при обвязке насоса по месту, эксплуатации насоса.

Основная причина проблем — частичный или полный переход перекачиваемой среды в газовую фазу в области входного штуцера и/или рабочей камеры жидкостного насоса, кавитационный срыв потока.

Производительность жидкостного насоса слишком мала и насос не способен прокачать газовую пробку. Зачастую сброс газа и предварительное заполнение не приводит к стабильной работе насоса — через несколько циклов насос снова срывает и перестает качать.

Применять жидкостные насосы в этой области надо крайне осторожно, по возможности рекомедуется применять дожимные компрессоры или насос-компрессоры.

Достаточно часто на практике мы встречаемся с применением жидкостных насосов в этой области, так как это наиболее экономически эффективное решение (иногда единственное возможное при применении оборудования Haskel).
Пример: Подача сжиженного газа в процесс под давлением, превышающим давление на входе в 36 и более раз.

Если Вам приходится эксплуатировать жидкостные насосы в этой области рекомендуем учесть следующие рекомендации:

  • Предусмотрите линию сброса газа на нагнетании насоса — это позволит Вам предварительно заполнить насос жидкой фазой перед пуском насоса
  • Обеспечьте максимальный кавитационный запас системы NPSHa — превышение давление на входе в насос над давлением насыщенных паров, для этого:
  • По возможности уберите местные сопротивления на входной магистрали: запорные, регулирующие клапаны, фильтры, сужения потока, резкие повороты потока.
  • При выборе места установки насоса нужно помнить, что труба — не только источник дополнительного сопротивления, но и источник подвода теплоты. Устанавливайте насос как можно ближе к питающему резервуару, обеспечьте теплоизоляцию всасывающего трубопровода.
  • Устанавливайте насос как можно ниже уровня резервуара, в идеале — на нижних этажах, в подвале и проч. Каждый метр заглубления насоса ниже уровня жидкости в резервуаре значительно снижает риск разрыва потока на входе.
  • По возможности обеспечьте постоянный расход через насос, при низкой скорости потока и особенно при остановке насоса жидкость успевает нагреваться за счет теплообмена с окружающей средой что приводит к срыву потока.
  • Обеспечьте наилучшие кавитационные характеристики насоса:
  • Применяйте по возможности двухплунжерную конструкцию, исплонения для отключения пневматического привода на цикле всасывания.
  • По возможности ограничивайте скорость насоса, особенно на цикле всасывания.

Если все вышеперечисленное не помогло:

  • Обеспечьте местное охлаждение входного трубопровода непосредственно перед входным штуцером насоса.
  • Поставьте один или несколько дожимных компрессоров или насос-компрессоров перед насосом. Установки с компрессором первой ступени и насосом второй ступени обычно сводят риск срыва потока к нулю.

Производительность ЛЮБОГО насоса/компрессора при 100% жидкой фазе на входе будет выше производительности того же насоса/компрессора при 100% газовой фазе на входе в 100 и более раз.

Как это правило работает на практике:
Имеем полностью заполненный спецконтейнер на входе с двумя выходами: нижний и верхний забор.
Если подключимся к верхнему забору — понятно, что производительности от насоса не получим.
Подключаемся к нижнему забору, чтобы раскачать хладон побыстрее, включаем насос "на полную".
Результат — насос не качает.
Причина:
Разрыв потока и частичный переход в газовую фазу происходит еще на запорном кране спецконтейнера, Ду которого как правило не более 6. Далее смесь жидкости и газа преодолевает прочие сопротивления по трубе и попадает в рабочую камеру, где при высоких скоростях поршня окончательно переходит в газовую фазу.
Насосу остается только сжать газовую фазу до давления сжижения.
Применяем правило "3 по 100": Снижаем скорость поршня насоса в неколько раз — в результате подача увеличивается в десятки, а то и сотни раз.

© Вся информация на русском языке, размещенная на сайте, является собственностью ООО "Пневмологика". Любое копирование, тиражирование запрещено.

Ссылка на основную публикацию
Adblock detector