Схемы внешнего электроснабжения промышленных предприятий

Схемы внешнего электроснабжения промышленных предприятий

Схема внутреннего электроснабжения предприятия разрабатывается с учетом размещения источников питания и потребителей, величин их напряжений и мощностей, требуемой надежности, расположения и конструктивного исполнения линий, РП и цеховых ТП, а также требований к системе электроснабжения.

Надежность или экономичность схемы повышаются, если удовлетворяются следующие условия:

а) сокращается число ступеней трансформации и приближается источник высшего напряжения к потребителю,

б) не предусматриваются специальные резервные (нормально не работающие) линии и трансформаторы, все элементы схемы в нормальном режиме должны находиться под нагрузкой и работать раздельно, при аварии одного из элементов (линии, трансформатора) оставшийся может работать с допустимой перегрузкой, предусмотренной ПУЭ, и с отключением части неответственных потребителей.

в) во всех звеньях системы распределения энергии, начиная от шин ГПП и кончая шинами на напряжения до 1000 В цеховых ТП, а иногда и цеховых силовых РП, осуществляется секционирование шин, а при преобладании нагрузок первой и второй категории предусматривается устройство автоматического ввода резерва (АВР),

г) параллельная работа линий и трансформаторов предусматривается при ударных резкопеременных нагрузках (прокатные станы, мощные сварочные агрегаты, электропечи) или когда АВР не обеспечивает необходимое быстродействие восстановления питания, определяемое режимом электроприемников. Вариант параллельной работы принимается только при технико-экономическом обосновании его целесообразности.

Электроэнергия на напряжениях 6—10 кВ распределяется по радиальным и магистральным схемам.

Радиальные схемы (одно- и двухступенчатые) применяются при размещении потребителей в различных направлениях от источника питания.

На небольших предприятиях и для питания крупных сосредоточенных нагрузок используются одноступенчатые схемы. Двухступенчатые схемы с промежуточными РП выполняются для крупных и средних предприятий с цехами, расположенными на большой территории. От промежуточного РП питаются трансформаторы цеховых ТП и крупные электроприемники. Трансформаторы цеховых ТП подключаются к линиям наглухо, и вся коммутационная аппаратура устанавливается на РП. Обычно к одному РП подключают четыре-пять ТП.

Радиальные схемы более двух ступеней утяжеляют линию головных участков, усложняют защиту и коммутацию.

При наличии электроприемников первой и второй категорий РП и подстанции питаются не менее чем по двум раздельно работающим линиям. Если в цехе преобладают приемники третьей категории, то он питается от однотрансформаторной подстанции, а питание отдельных ответственных нагрузок резервируется перемычками между подстанциями.

Радиальная схема с промежуточным РП, в которой выполнены указанные выше условия, приведена на рис. 1.

Рис. 1. Радиальная схема электроснабжения предприятия

По радиальным линиям первой ступени питаются РП, ТП1, ТП4, ТП5 и ТП6. По линиям второй ступени получают питание ТП2 и ТП3. Все коммутационные аппараты размещены на ГПП и РП. На ТП1, ТП2 и ТПЗ установлено по два трансформатора с глухим присоединением к питающим линиям. Каждая линия и трансформатор рассчитаны на покрытие всех нагрузок первой категории и основных нагрузок второй категории. При отсутствии данных о характере нагрузок каждая линия и трансформатор двухтрансформаторных подстанций выбираются исходя из 60—70 % от суммарной нагрузки подстанции.

Шины ГПП, РП, ТП1, ТП2 и ТПЗ секционированы (принцип глубокого секционирования). Секционные аппараты нормально разомкнуты и на них предусмотрено устройство АВР. При аварии любого элемента (линии или трансформатора) он отключается, срабатывает устройство АВР на секционном аппарате, который, включаясь, обеспечивает питание потребителей по параллельному элементу схемы, используя ее перегрузочную способность.

На ТП4, ТП5 и ТП6 установлено по одному трансформатору. Для питания приемников второй категории между ТП4 и ТП5 на стороне 0,4 кВ выполнена перемычка. Пропускная способность низковольтных перемычек, кабельных или шинных (при схеме блока трансформатор — магистраль), между подстанциями, если необходимо по условиям надежности, принимается 15—30 % от мощности трансформатора.

Электроприемники второй категории не требуют специального резервирования, а потому они могут питаться от одного источника. Однако перерыв в электроснабжении приводит к убыткам производства или ущербу, определяемому стоимостью простоя рабочей силы, расстройством технологического процесса, недоотпуском продукции и т. п.

На промышленных предприятиях приемников второй категории большинство, причем некоторые из них по своим характеристикам приближаются к электроприемникам первой категории, а некоторые — третьей. Учитывая степень надежности отдельных элементов системы электроснабжения, ПУЭ предусматривает питание приемников второй категории либо по одной воздушной линии или токопроводу, либо по кабельной линии, расщепленной на два кабеля.

При повреждении одного из кабелей выключатель отключает всю линию, персонал отсоединяет разъединителем поврежденный кабель с двух сторон и включает выключатель. Вся нагрузка переводится на исправный кабель.

Радиальные схемы применяются при кабельной или воздушной прокладке линий. Магистральные схемы используются при линейном («упорядоченном») размещении подстанций на территории предприятия и выполняются в виде одиночных и двойных магистралей с одно- или двусторонним питанием.

Одиночные магистрали без резервирования (рис. 2, а) служат для питания неответственных потребителей. Схема одиночной магистрали с двусторонним питанием (рис. 2, б) более надежна. В нормальном режиме .подстанции могут питаться только от одного источника (при втором — резервном) .или от двух источников одновременно, при этом магистраль разомкнута на одной из подстанций. Частным случаем одиночной магистрали с двухсторонним питанием является кольцевая схема (рис. 2, в).

Рис. 2. Схемы одиночных магистралей: а — питание от одного источника, б — с двухсторонним питанием, в — кольцевая

Схемы двойных магистралей высоконадежны и применяются при наличии нагрузок первой и второй категорий на подстанциях с двумя секциями сборных шин (рис. 3, а) или на двухтрансформаторных подстанциях без сборных шин высшего напряжения. Каждая магистраль рассчитана на покрытие нагрузок ответственных потребителей всех подстанций. Секционные выключатели нормально разомкнуты и оборудованы устройством АВР. Магистрали могут получать питание от второго источника. Схема войной магистрали с двусторонним питанием («встречная» магистраль) применяется при наличии двух независимых источников (рис. 3,б).

Рис. 3. Схемы сквозных магистралей: а — двойная сквозная магистраль при наличии сборных шин высокого напряжения на цеховых подстанциях, б — с двусторонним питанием при отсутствии сборных шин высокого напряжения на цеховых подстанциях

Читайте также:  Как реанимировать дендробиум без корней

Конструктивно магистральные схемы выполняются кабелями, токопроводами и воздушными линиями. При кабельных линиях 6—10 кВ рекомендуется присоединять к одной магистрали не более четырех-пяти трансформаторов мощностью и 1000 кВА. Магистральные схемы с токопроводами целесообразны при концентрированных мощных потребителях и передаче меньших потоков энергии.

Магистральные воздушные линии связывают на напряжениях 35—220 кВ отдельные ГПП и подают питание на ПГВ. Глубокие вводы осуществляются в виде магистральных воздушных линий с отпайками-ответвлениями к подстанциям 35— 220 кВ или в виде радиальных кабельных и воздушных линий. Система глубоких вводов позволяет распределять энергию при повышенном напряжении, сокращает протяженность кабельных линий 6—10 кВ, дает возможность обходиться без промежуточных РП 6—10 кВ, разукрупняет мощные ГПП, облегчает регулирование напряжения и упрощает развитие системы электроснабжения.

Схемы внутреннего электроснабжения электроприемников первой категории

Для приемников первой категории надежности перерыв в электроснабжении допустим лишь на время автоматического ввода резервного питания, причем электроснабжение должно осуществляться от двух независимых источников питания. Независимым источником питания ПУЭ считают источник, на котором сохраняется напряжение при исчезновении его на других источниках.

К независимым источникам относятся распределительные устройства двух электростанций или подстанций, а также две секции сборных шин распределительных устройств (РУ), электрически не связанные между собой ни на приемном пункте, ни по питающей сети (рис. 4).

Рис. 4. Питание крупного предприятия от двух независимых источников

Глубокое секционирование всех звеньев системы с устройствами АВР на секционных выключателях обеспечивает надежность и бесперебойность питания потребителей первой категории.

Электроприемники особой группы первой категории требуют повышенной надежности питания. Их электроснабжение должно осуществляться от трех независимых источников так, чтобы при ремонте одного из них питание поступало от оставшихся двух. В схемах электроснабжения это условие выполняется по резервным кабельным перемычкам от соседних подстанций (рис. 5) или от специальных дизель-генераторных установок.

Рис. 5. Пример схемы электроснабжения при питании особой группы электроприемников

Кабельные перемычки (и мощность третьего аварийного источника) выбираются исходя из нагрузки приемников особой группы, предназначенных только для безаварийного останова производства.

При небольшой мощности приемников особой группы можно предусматривать агрегаты бесперебойного питания (АБП) мощностью 16—260 кВ.А с аккумуляторными батареями.

Характерные схемы электроснабжения промышленных предприятий

Подстанция > Выбор места расположения питающих подстанций

ХАРАКТЕРНЫЕ СХЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

Внешнее электроснабжение ,
а) Питание от энергосистемы без собственных электростанций. На рис. 9-9 приведены основные характерные схемы электроснабжения промышленных предприятий, питание которых производится только от энергосистем.
На рис. 9-9, а представлена схема радиального питания. Здесь напряжение сети внешнего электроснабжения совпадает с высшим напряжением сети на территории внутри предприятия (система внутреннего электроснабжения), благодаря чему не требуется трансформация для предприятия в целом. Такие схемы электроснабжения характерны при питании прежде всего на напряжениях 6, 10 и 20 кВ.
На рис. 9-9, б приведена схема так называемого «глубокого ввода» 20—110 кВ и редко 220 кВ, когда напряжение от энергосистемы без трансформации вводится по схеме двойной транзитной сквозной магистрали на внутреннюю территорию предприятия. В этой схеме при напряжении 35 кВ понижающие трансформаторы устанавливаются непосредственно у зданий цехов и имеют низшее напряжение 0,69—0,4 кВ. Однако при напряжениях энергосистемы 110 — 220 кВ непосредственная трансформация на 0,69—0,4 кВ для цеховых сетей оказывается обычно нецелесообразной из-за сравнительно малой суммарной мощности потребителей отдельного цеха. В таких случаях может оказаться целесообразной промежуточная трансформация на напряжение 6—10 кВ на нескольких промежуточных понизительных подстанциях, каждая из которых должна питать свою группу цехов. В случаях крупных печных или специальных преобразовательных установках большой мощности может оказаться целесообразным трансформировать напряжение 110 или 220 кВ непосредственно на технологическое напряжение (обычно отличное от 0,69 или 0,4), устанавливая специальные для этого назначения понижающие трансформаторы непосредственно у зданий цехов.
На рис. 9-9, в приведена возможная схема электроснабжения промышленного предприятия с наличием трансформации, осуществляемой в месте перехода от схемы внешнего к схеме внутреннего электроснабжения, которая характерна для предприятий значительной мощности и большой территории.
На рис. 9-9, г дана схема при условии трансформации на два напряжения, что характерно для мощных предприятий, находящихся на значительном расстоянии друг от друга.

Рис. 9-9. Характерные схемы электроснабжения промышленных предприятий при питании их только от энергосистемы.

б) Питание от энергосистемы при наличии на промышленном предприятии собственной электростанции. На рис. 9-10 приведены характерные схемы электроснабжения промышленных предприятий при наличии на предприятии собственной электростанции. На рис. 9-10, а дана схема для случая, когда место расположения электростанции совпадает с центром электрических нагрузок предприятия и питание предприятия от энергосистемы осуществляется на генераторном напряжении. На рис. 9-10, б приведена схема для случая, когда электростанция находится в удалении от центра его электрических нагрузок, но питание от системы происходит на генераторном напряжении. На рис. 9-10, в представлена схема для случая, когда питание от системы осуществляется на повышенном напряжении и распределение электроэнергии по территории предприятия происходит на генераторном напряжении. Электростанция предприятия помещена вне центра электрических нагрузок.
На рис. 9-10, г изображена схема, условия которой аналогичны схеме, представленной на рис. 9-10, в, но трансформация производится на два напряжения.

Рис. 9-10. Характерные схемы электроснабжения предприятий, питающихся от энергосистемы и собственных электростанций.

В схемах на рис. 9-9, б и г, 9-10, в и г для питания от системы на напряжениях 35—220 кВ могут применяться варианты, приведенные на рис. 9-11. Схема на рис. 9-11, а (без выключателей на стороне высшего напряжения) рекомендуется как более дешевая в исполнении и не менее надежная в эксплуатации, чем схема на рис. 9-11, б. Однако применение схемы на рис. 9-11, а возможно только для тех случаев, когда операция по включению и отключению трансформаторов не производится ежедневно по причине соблюдения экономически целесообразного режима работы. Если отключение и включение трансформаторов происходит ежедневно, следует выбрать схему, представленную на рис. 9-11,6.

Читайте также:  Керамическая плитка для пола 30х30 цена

в) Питание только от собственной электростанции (рис. 9-12). Это имеет место весьма часто для предприятий, удаленных от сетей энергосистем, но по мере развития электрификации количество таких случаев будет все время уменьшаться.

Рис. 9-11. Схемы присоединения трансформаторов ГПП к сети энергосистемы напряжением 35—220 кВ.

Рис-9-12. Характерная схема электроснабжения при питании промышленного предприятия только от собственной электростанции, расположенной на его территории.

Внутреннее электроснабжение. Схемы электроснабжения обеспечивающие питание предприятия на его территории, ввиду большой разветвленности, большого количества аппаратов должны обладать в значительно большей степени, чем схемы внешнего электроснабжения, дешевизной и надежностью одновременно. Это положение обеспечивается тем, что в зависимости от конкретных требований обеспечения приемников и потребителей применяются различные схемы питания.
а) Схемы радиального питания. Радиальными являются такие схемы, в которых электрическая энергия от центра питания (электростанция предприятия, подстанция или распределительный пункт) передается прямо к цеховой подстанции, без ответвлений на пути для питания других потребителей. Из сказанного видно, что такие схемы должны обладать большим количеством отключающей аппаратуры и иметь значительное число питающих линий. Исходя из этого основного положения, характеризующего схемы радиального питания, можно сделать вывод, что применять их следует только для питания достаточно мощных потребителей. На рис. 9-13 приведены характерные схемы радиального питания для систем как внешнего, так и внутреннего электроснабжения промышленных предприятий.
Схема на рис. 9-13, а предназначается для питания потребителей 3-й категории или потребителей 2-й категории с пониженной ответственностью, где допустим перерыв в электроснабжении на срок до 1—2 сут. Схема на рис. 9-13, б предназначается для потребителей 2-й категории, перерыв питания у которых может быть допущен в пределах не более 1—2 ч. Схема на рис. 9-13, в предназначается для электроснабжения потребителей 1-й категории, но часто используется и для питания потребителей 2-й категории, перерыв в питании которых влечет за собой недоотпуск продукции, имеющих народнохозяйственное значение в масштабе страны.
б) Схемы магистрального питания. Магистральные схемы применяются в системе внутреннего электроснабжения предприятий в том случае, когда потребителей достаточно много и радиальные схемы питания явно нецелесообразны. Обычно магистральные схемы обеспечивают присоединение пяти-шести подстанций с общей мощностью потребителей не более 5000—6000 кВА. На рис. 9-14 приведена типичная схема магистрального питания. Эти схемы характеризуются пониженной надежностью питания, но дают возможность уменьшить число отключающих аппаратов высокого напряжения и более удачно скомпоновать потребителей для питания в группе по пяти-шести подстанций.

Рис. 9-13. Характерные радиальные схемы питания промышленного предприятия (схемы внутреннего электроснабжения).

Рис 9-14. Характерная магистральная схема питания промышленного предприятия в системе внутреннего электроснабжения.

В тех случаях, когда необходимо сохранить преимущества магистральных схем и обеспечить высокую надежность питания, следует прибегать к так называемой системе двойных транзитных (сквозных) магистралей (рис. 9-15). В этой схеме при повреждении любой из питающих магистралей высшего напряжения питание надежно обеспечивается по второй магистрали путем автоматического переключения потребителей на секцию шин низшего напряжения трансформатора, оставшегося в работе. Это переключение происходит со временем не более 0,1—0,2 с, что практически не успевает отразиться на электроснабжении потребителей.

Рис. 9-15. Характерная схема питания сквозными двойными магистралями в системе внутреннего электроснабжения предприятия.

в) Схемы смешанного питания. В практике проектирования и эксплуатации промышленных предприятий редко встречаются схемы, построенные только по радиальному или только по магистральному принципу питания. Обычно крупные и ответственные потребители или приемники питаются по радиальной схеме. Средние и мелкие потребители группируются, их питание проектируется по магистральному принципу. Такое решение позволяет создать схему внутреннего электроснабжения с наилучшими технико-экономическими показателями. На рис. 9-16 приведена такая комбинированная схема.

Рис. 9-16. Схема смешанного питания потребителей в системе внутреннего электроснабжения промышленного предприятия.

4.5. Схемы внешнего электроснабжения промышленных предприятий

Концентрация крупных производств на сравнительно малой территории приводит к созданию крупных нагрузочных узлов. Многообразие конкретных условий, которые нужно учесть при проектировании электроснабжения предприятий разных отраслей, приводит к многообразию схем внешнего электроснабжения. Однако практика проектирования выявила для этих потребителей характерные особенности, определила общий подход и создала ряд характерных схем.

Выбор схемы и напряжения сети внешнего электроснабжения производится на основе технико-экономического сравнения возможных вариантов с учетом перспективы развития предприятия, чтобы осуществление первой очереди не приводило к большим затратам, связанным с последующим развитием.

При проектировании схемы электроснабжения промышленного предприятия следует учитывать потребность в электроэнергии всех потребителей района — городов и поселков, сельского хозяйства. Схема должна оптимизироваться с учетом интересов всех рассматриваемых потребителей.

Основным источником электроснабжения, как правило, являются энергетические системы. Исключение составляют предприятия с большим теплопотреблением, для которых основным источником может являться ТЭЦ. При этом обязательно предусматривать связь ТЭЦ с энергосистемой, как правило, на напряжении 110 кВ и выше.

Общей тенденцией построения современных схем электроснабжения промышленных предприятий является применение глубоких вводов — максимальное приближение источников питания к электроустановкам предприятий, сведение к минимуму количества сетевых звеньев и ступеней трансформации, дробление ПС ВН при размещении предприятий на значительной территории.

Применяемые для внешнего электроснабжения промпредприятий напряжения зависят от напряжения электрических сетей энергосистемы в районе размещения предприятий и от их нагрузки.

Для электроснабжения предприятий с небольшой нагрузкой используются сети 10 кВ с питанием их от ближайших ПС 110 кВ энергосистемы; для электроснабжения средних и крупных предприятий, как правило, применяются сети 110 кВ, в отдельных случаях — 220–500 кВ.

Используются следующие основные схемы распределения электроэнергии:

главная понижающая ПС (ГПП) предприятия 220–500/110 кВ для распределения электроэнергии между ПС глубоких вводов (ПГВ)

Читайте также:  Установка деревянных окон в квартире

110/10 (6) кВ; ГПП в отдельных случаях целесообразно совмещать с ПС энергосистемы, предназначенной для электроснабжения района;

ряд ПС 110/10 (6) кВ, присоединяемых к сети 110 кВ системы;

ПГВ 220/10 (6) кВ — для крупных предприятий с сосредоточенной нагрузкой.

Подавляющее большинство крупных промышленных предприятий имеет потребителей 1-й и 2-й категорий, поэтому их внешнее электроснабжение осуществляется не менее чем по двум линиям.

Предпочтительной является схема, при которой линии выполняются на отдельных опорах и идут по разным трассам (или каждая ПС питается по двум цепям, подвешенным на опорах разных двухцепных ВЛ). Выбор пропускной способности питающих линий производится таким образом, чтобы при выходе из работы одной из них оставшиеся обеспечивали питание приемников электроэнергии 1-й и 2-й категорий, необходимых для функционирования основных производств.

ПГВ выполняются, как правило, по простейшим схемам с минимальным количеством оборудования на напряжении ВН.

На рис. 4.12-4.16 приведены примеры схем внешнего электроснабжения крупных промышленных предприятий.

Для обеспечения потребности в тепле химкомбината (рис. 4.12) предусмотрена ТЭЦ мощностью 200 МВт. Недостающая мощность подается из системы по сети 220 кВ. Для приема этой мощности предусмотрена ГПП 220/110/10 кВ, которая служит для питания нагрузок электролиза на 10 кВ, для распределения электроэнергии по территории комбината к ПГВ 110/6 кВ и приема мощности от ТЭЦ на напряжении 110 кВ.

Сравнительно небольшое потребление тепла заводом минеральных удобрений (рис. 4.13) удовлетворяется от котельной; 90 % электрической нагрузки приходится на потребителей 1-й категории. В связи с этим три ПГВ 110/6 кВ выполняют по схеме двух блоков линия — трансформатор с возможностью покрытия всей нагрузки от одного блока.

Потребность в тепле нефтехимкомбината (рис. 4.14) удовлетворяется от ТЭЦ мощностью 150 МВт, дефицит электрической мощности — от районной ПС 330/110 кВ. Мощность распределяется как от шин 6 кВ ТЭЦ, так и от пяти ПГВ 110/6 кВ.

Схема электроснабжения алюминиевого завода, показанная на рис. 4.15, осуществляется с помощью трансформаторов 220/10 кВ с расщепленной обмоткой 10 кВ мощностью по 180 МВ-А. От каждого трансформатора питаются две серии последовательно соединенных ванн. На каждые четыре рабочих трансформатора устанавливается один резервный, подключенный к трансферной системе шин, который может заменить любой из рабочих переключением на стороне 10 кВ (в нормальном режиме он отключен со стороны 10 кВ). Рабочие трансформаторы подключены блоками с ВЛ 220 кВ от источника питания (в рассматриваемом случае — крупная ГЭС). При ремонте одного из рабочих трансформаторов питающая его ВЛ присоединяется к трансферной системе и питает разервный; при аварии одной из ВЛ она отключается вместе со своим трансформатором, а одна из оставшихся в работе присоединяется к трансферной системе и временно питает два трансформатора — рабочий и резервный. Кратковременный перерыв в электроснабжении, необходимый для производства переключений, допустим за счет тепловой инерции ванн.

Электроснабжение металлургических заводов (рис. 4.16, а) осуществляется от районных ПС 220–500/110 кВ и ТЭЦ по двухцепным ВЛ 110 кВ, к каждой из которых присоединяется ряд двухтрансформаторных ПГВ 110/10 (6) кВ, выполняемых по типовой схеме 110-4Н. В отдельных случаях при большом количестве ВЛ и ПГВ сооружаются также узловые распределительные пункты (УРП) 110 кВ. Такие схемы используются для расширяемых существующих заводов.

При использовании на заводах дуговых сталеплавильных печей необходимо проверить их влияние на системы электроснабжения. При необходимости повышения мощности КЗ в общих ЦП печей и других потребителей могут применяться следующие мероприятия:

питание дуговых сталеплавильных печей через отдельные трансформаторы;

уменьшение индуктивного сопротивления питающих линий (например, продольная компенсация на ВЛ соединяющих ЦП с источниками);

включение на параллельную работу двух питающих дуговую печь линий и трансформаторов на стороне ВН и НН.

Крупномасштабное освоение нефтяных месторождений и переработки попутного газа в Западной Сибири, характеризующихся сложными климатическими условиями и высокими требованиями к надежности электроснабжения, вызвало появление особых требований к построению схем электроснабжения. На основании проектов технологической части, обобщения опыта проектирования, строительства и эксплуатации систем электроснабжения этих объектов установлены категории отдельных электроприемников по надежности электроснабжения. Принято, что электроснабжение объектов нефтедобычи и переработки попутного газа должно обеспечиваться без ограничений как в нормальных, так и в послеаварийных режимах при отключении любого элемента электрической сети. Принято положение о проектировании схем электроснабжения нефтяных месторождений и переработки попутного газа в Западной Сибири, которое устанавливает следующие требования и рекомендации:

электроснабжение вновь вводимых нефтяных месторождений, как правило, осуществляется на напряжении 110 кВ, а при наличии обоснований — на 220 кВ;

на нефтяных месторождениях с объемом добычи нефти до 2 млн т в год допускается предусматривать сооружение одной ПС, более 2 млн т в год — не менее двух ПС; в первом случае рекомендуется присоединение ПС в транзит ВЛ с двусторонним питанием или двумя одноцепными тупиковыми ВЛ (допускается двухцепная ВЛ на стальных опорах — при наличии обоснований), во втором случае ПС должны питаться от независимых источников не менее чем по двум ВЛ, прокладываемым по разным трассам;

для электроснабжения компрессорных станций (КС) газлифта, водозаборов, газоперерабатывающих заводов и головных КС при каждом объекте сооружается ПС 110–220 кВ, подключаемая к независимым источникам питания не менее чем по двум одноцепным ВЛ или заходом одной цепи ВЛ с двусторонним питанием;

размещение ПС принимается с максимально возможным приближением к технологическим объектам;

на ПС предусматривается установка двух трансформаторов из условий резервирования 100 % нагрузки;

для ВЛ 110 кВ в качестве рационального типового сечения провода рекомендуется АС 120–150 (при наличии обоснований — до АС-240), для ВЛ 220 кВ — АС-240-300.

Схемы присоединения ПС к различным конфигурациям сети приведены в табл. 4.5.

Данный текст является ознакомительным фрагментом.

Ссылка на основную публикацию
Adblock detector