Схема гальванического элемента как составить

Схема гальванического элемента как составить

1.Записать схемы электродов.

2.Рассчитать величины электродных потенциалов металлов (φ1 и φ2), используя уравнение Нернста

3.Определить, зная, что φк > φа, металл электрода-анода и металл электрода-катода.

4.Составить схему гальванического элемента, используя принятую форму записи.

5.Записать уравнения катодной, анодной и суммарной реакций, идущих в элементе.

6.Рассчитать ЭДС гальванического элемента.

Гальванические элементы – это химические источники тока однократного действия. Применяются в виде сухих, наливных и топливных батарей.

ХИМИЧЕСКИЕ ИСТОЧНИКИ ТОКА

Химические источники тока делятся на первичные и вторичные источники тока. Первичные источники не перезаряжаются, т.е. израсходованные активные материалы в них не могут быть регенерированы или заменены, и батарею электропитания приходится выбрасывать. Вторичная (аккумуляторная) батарея может быть перезаряжена. Израсходованные активные материалы в ней могут быть регенерированы, и такая батарея электропитания допускает многократное повторное использование.

Первичные источники тока

Сухой элемент Лекланше. Большинство первичных источников тока, выпускаемых в настоящее время промышленностью, относятся к сухим батареям электропитания. Около 25% сухих батарей выполнены на основе марганцово-цинкового элемента Лекланше – одного из первых сухих элементов.

В сухом элементе Лекланше (рис. 6) имеется графитовый положительный электрод, окруженный электролитом в виде смеси диоксида марганца (MnO2), графитового порошка, хлорида аммония (NH4Cl), хлорида цинка (ZnCl2) и воды. Эта смесь служит также деполяризующим агентом, предотвращающим образование газообразного водорода внутри элемента. Если не предотвратить образование водорода, то под давлением газа батарейка раздувается, в результате чего нарушается ее герметичность и из нее вытекает электролит. Электролит и графитовый электрод находятся в тонкостенном цинковом стаканчике, который, выполняя функции защитного корпуса, служит также отрицательным электродом батарейки.

Рис. 6. ГРАФИТОВО-ЦИНКОВЫЙ СУХОЙ ЭЛЕМЕНТ

1 –бесшовный цинковый стаканчик (отрицательный электрод); 2 – графитовый стержень (положительный электрод); 3 – деполяризующая смесь; 4 – пастообразный электролит.

В элементе Лекланше электричество вырабатывается за счет химического взаимодействия электролита с цинковым электродом, являющимся анодом. При подключении к зажимам батарейки внешней нагрузки, например лампочки карманного фонарика, через лампочку начинает проходить ток от цинкового электрода к графитовому. Ток не прекращается, пока не растворится почти весь цинк. После этого батарейка теряет работоспособность, и ее необходимо заменить.

Щелочной марганцово-цинковый сухой элемент.Щелочной марганцово-цинковый сухой элемент отличается от сухого элемента Лекланше главным образом тем, что в нем в качестве электролита используется высокоактивная щелочь КОН.

Схема записи элемента:

Реакции, идущие на катоде и аноде в марганцово-цинковом гальваническом элементе:

A (-) Zn – 2e — ® Zn 2+

K (+) 4MnO2 = 4H + + 4e — ® 4MnO(OH)

В щелочном элементе примерно вдвое больше активных веществ, чем в элементе Лекланше, и он очень подходит для многих устройств со сравнительно большой потребляемой мощностью, таких, как лампы-вспышки фотоаппаратов, вращательные электроприводы и мощные стереофонические звуковые системы. Щелочные элементы применяются примерно в 50% бытовой электронной аппаратуры.

Щелочной марганцово-цинковый элемент дает напряжение 1,5 В.

Топливные элементы.

Топливные элементымогут работать в непрерывном режиме без простоев для перезарядки, так как их активный материал (водород, СО2, уголь, жидкие и газообразные углеводороды) подводится из внешнего источника. Их электролит в процессе работы не изменяется. В топливных элементах энергия химических реакций, выделяющаяся в процессе окисления топлива, непосредственно преобразуется в электричество. Их теоретический КПД близок к 100%. т.к. окислительно-восстановительная реакция горения топлива используется непосредственно для прямого получения электрического тока в топливном элементе.

Топливные элементы в будущем могут использоваться как автономные источники тока для автомобилей и катеров, электрогенераторы для индивидуальных домашних хозяйств, переносные силовые блоки для инструментов и другого оборудования.

Электрическую энергию получают непрерывно до тех пор, пока в анодное пространство элемента не прекратится подача топлива, а в катодное – кислорода (или воздуха). Схема записи низкотемпературного Н22 топливного элемента:

Для гальванического элемента принята следующая форма записи (на примере элемента Даниэля):

где вертикальная линия | обозначает границу раздела фаз, а двойная вертикальная линия || — солевой мостик. Электрод, на котором происходит окисление, называется анодом; электрод, на котором происходит восстановление, называется катодом. Гальванический элемент принято записывать так, чтобы анод находился слева.

Электродные полуреакции принято записывать как реакции восстановления (таблица 12.1), поэтому общая реакция в гальваническом элементе записывается как разность между реакциями на правом и левом электродах:

Правый электрод: Cu 2+ + 2e = Cu

Левый электрод: Zn 2+ + 2e = Zn

Общая реакция: Cu 2+ + Zn = Cu + Zn 2+

Потенциал E электрода рассчитывается по формуле Нернста:

,

где aOx и aRed — активности окисленной и восстановленной форм вещества, участвующего в полуреакции; E oстандартный потенциал электрода (при aOx = aRed =1); n — число электронов, участвующих в полуреакции; R — газовая постоянная; T — абсолютная температура; F — постоянная Фарадея. При 25 o C

Читайте также:  Адаптер для перфоратора под сверло

Стандартные электродные потенциалы электродов измеряются относительно стандартного водородного электрода, потенциал которого принят равным нулю. Значения некоторых стандартных электродных потенциалов приведены в таблице 12.1.

Электродвижущая сила (ЭДС) элемента равна разности потенциалов правого и левого электродов:

Если ЭДС элемента положительна, то реакция (так, как она записана в элементе) протекает самопроизвольно. Если ЭДС отрицательна, то самопроизвольно протекает обратная реакция.

Стандартная ЭДС равна разности стандартных потенциалов:

.

Для элемента Даниэля стандартная ЭДС равна

E o = E o (Cu 2+ /Cu) — E o (Zn 2+ /Zn) = +0.337 — (-0.763) = +1.100 В.

ЭДС элемента связана с G протекающей в элементе реакции:

G = — nFE.

Зная стандартную ЭДС, можно рассчитать константу равновесия протекающей в элементе реакции:

.

Константа равновесия реакции, протекающей в элементе Даниэля, равна

= 1.54 . 10 37 .

Зная температурный коэффициент ЭДС , можно найти другие термодинамические функции:

S =

H = G + T S = — nFE + .

Таблица 12.1. Стандартные электродные потенциалы при 25 o С.

Электрод

Электродная реакция

E o , В

Li + /Li Li + + e = Li -3.045 K + /K K + + e = K -2.925 Ba 2+ /Ba Ba 2+ + 2e = Ba -2.906 Ca 2+ /Ca Ca 2+ + 2e = Ca -2.866 Na + /Na Na + + e = Na -2.714 La 3+ /La La 3+ + 3e = La -2.522 Mg 2+ /Mg Mg 2+ + 2e = Mg -2.363 Be 2+ /Be Be 2+ + 2e = Be -1.847 A1 3+ /A1 Al 3+ + 3e = Al -1.662 Ti 2+ /Ti Ti 2+ + 2e = Ti -1.628 Zr 4+ /Zr Zr 4+ + 4e = Zr -1.529 V 2+ /V V 2+ + 2e = V -1.186 Mn 2+ /Mn Mn 2+ + 2e = Mn -1.180 WO4 2- /W WO4 2- + 4H2O + 6e = W + 8OH — -1.05 Se 2- /Se Se + 2e = Se 2- -0.77 Zn 2+ /Zn Zn 2+ + 2e = Zn -0.763 Cr 3+ /Cr Cr 3+ + 3e = Cr -0.744 Ga 3+ /Ga Ga 3+ + 3e = Ga -0.529 S 2- /S S + 2e = S 2- -0.51 Fe 2+ /Fe Fe 2+ + 2e = Fe -0.440 Cr 3+ ,Cr 2+ /Pt Cr 3+ + e = Cr 2+ -0.408 Cd 2+ /Cd Cd 2+ + 2e = Cd -0.403 Ti 3+ , Ti 2+ /Pt Ti 3+ + e = Ti 2+ -0.369 Tl + /Tl Tl + + e = Tl -0.3363 Co 2+ /Co Co 2+ + 2e = Co -0.277 Ni 2+ /Ni Ni 2+ + 2e = Ni -0.250 Mo 3+ /Mo Mo 3+ + 3e = Mo -0.20 Sn 2+ /Sn Sn 2+ + 2e = Sn -0.136 Pb 2+ /Pb Pb 2+ + 2e = Pb -0.126 Ti 4+ , Ti 3+ /Pt Ti 4+ +e = Ti 3+ -0.04 D + /D2, Pt D + + e = 1 /2 D2 -0.0034 H + /H2, Pt H + + e = 1 /2 H2 0.000 Ge 2+ /Ge Ge 2+ + 2e = Ge +0.01 Br — /AgBr/Ag AgBr + e = Ag + Br — +0.0732 Sn 4+ , Sn 2+ /Pt Sn 4+ + 2e = Sn 2+ +0.15 Cu 2+ , Cu + /Pt Cu 2+ + e = Cu + +0.153 Cu 2+ /Cu Cu 2+ + 2e = Cu +0.337 Fe(CN)6 4- , Fe(CN)6 3- /Pt Fe(CN)6 3- + e = Fe(CN)6 4- +0.36 OH — /O2, Pt l /2 O2 + H2O + 2e = 2OH — +0.401 Cu + /Cu Cu + + e = Cu +0.521 J — /J2, Pt J2 + 2e = 2J — +0.5355 Te 4+ /Te Te 4+ + 4e = Te +0.56 MnO4 — , MnO4 2- /Pt MnO4 — + e = MnO4 2- +0.564 Rh 2+ /Rh Rh 2+ /Rh +0.60 Fe 3+ , Fe 2+ /Pt Fe 3+ + e = Fe 2+ +0.771 Hg2 2+ /Hg Hg2 2+ + 2e = 2Hg +0.788 Ag + /Ag Ag + + e = Ag +0.7991 Hg 2+ /Hg Hg 2+ + 2e = Hg +0.854 Hg 2+ , Hg + /Pt Hg 2+ + e = Hg + +0.91 Pd 2+ /Pd Pd 2+ + 2e = Pd +0.987 Br — /Br2, Pt Br2 + 2e = 2Br — +1.0652 Pt 2+ /Pt Pt 2+ + 2e = Pt +1.2 Mn 2+ , H + /MnO2, Pt MnO2 + 4H + + 2e = Mn 2+ + 2H2O +1.23 Cr 3+ , Cr2O7 2- , H + /Pt Cr2O7 2- + 14H + + 6e = 2Cr 3+ + 7H2O +1.33 Tl 3+ , Tl + /Pt Tl 3+ + 2e = Tl + +1.25 Cl — /Cl2, Pt Cl2 + 2e = 2Cl — +1.3595 Pb 2+ , H + /PbO2, Pt PbO2 + 4H + + 2e = Pb 2+ + 2H2O +1.455 Au 3+ /Au Au 3+ + 3e = Au +1.498 MnO4 — , H + /MnO2, Pt MnO4 — + 4H + + 3e = MnO2 + 2H2O +1.695 Ce 4+ , Ce 3+ /Pt Ce 4+ + e = Ce 3+ +1.61 SO4 2- ,H + /PbSO4, PbO2, Pb PbO2 + SO4 2- + 4H + + 2e =
PbSO4 + 2H2O +1.682 Au + /Au Au + + e = Au +1.691 H — /H2, Pt H2 + 2e = 2H — +2.2 F — /F2, Pt F2 + 2e = 2F — +2.87

Пример 12-1. Рассчитать стандартный электродный потенциал пары Cu 2+ /Cu + по данным таблицы 11.1 для пар Cu 2+ /Cu и Cu + /Cu.

Cu 2+ + 2e = Cu G o = —nFE o = -2(96485 Кл . моль -1 )(+0.337 В) = -65031 Дж . моль -1 .

Читайте также:  Оригами из бумаги для папы

Cu + + e = Cu G o = —nFE o = -(96485 Кл . моль -1 )(+0.521 В) = -50269 Дж . моль -1 .

Cu 2+ + e = Cu + G o = —nFE o = -3(96485 Кл . моль -1 )E o = -14762 Дж . моль -1 ,

откуда E o = +0.153 В.

Пример 12-2. Составить схему гальванического элемента, в котором протекает реакция

Рассчитать стандартную ЭДС элемента при 25 o C, G o и константу равновесия реакции и растворимость AgBr в воде.

Ag | AgBr| Br — || Ag + | Ag

Правый электрод: Ag + + e = Ag E o = 0.7792 В

Левый электрод: AgBr + e = Ag + Br — E o = 0.0732 В

Общая реакция: Ag + + Br — = AgBr E o = 0.7260 В

G o = —nFE o = -(96485 Кл . моль -1 )(0.7260 В) = -70.05 кДж . моль -1

= 1.872 . 10 12

1/K= a(Ag + ) . a(Br — ) = m(Ag + ) . m(Br — ) . ( ) 2 = m 2 ( ) 2

Отсюда, полагая = 1, получаем m = 7.31 . 10 -7 моль . кг -1

Пример 12-3. H реакции Pb + Hg2Cl2 = PbCl2 + 2Hg, протекающей в гальваническом элементе, равно -94.2 кДж . моль -1 при 298.2 K. ЭДС этого элемента возрастает на 1.45 . 10 -4 В при повышении температуры на 1К. Рассчитать ЭДС элемента и S при 298.2 K.

= 2 . 96485 . 1.45 . 10 -4 = 28.0 (Дж . моль -1. K -1 ).

G = HT S = —nFE, откуда

= = 0.531 (В).

Ответ. S = 28. Дж . моль -1 K -1 ; E = 0.531 В.

12-1. Рассчитать стандартный электродный потенциал пары Fe 3+ /Fe по данным таблицы 12.1 для пар Fe 2+ /Fe и Fe 3+ /Fe 2+ . (ответ)

12-2. Рассчитать произведение растворимости и растворимость AgCl в воде при 25 o C по данным таблицы 12.1. (ответ)

12-3. Рассчитать произведение растворимости и растворимость Hg2Cl2 в воде при 25 o C по данным о стандартных электродных потенциалах. (ответ)

12-4. Рассчитать константу равновесия реакции диспропорционирования 2Cu + Cu 2+ + Cu при 25 o C. (ответ)

12-5. Рассчитать константу равновесия реакции ZnSO4 + Cd = CdSO4 + Zn при 25 o C по данным о стандартных электродных потенциалах. (ответ)

12-6. ЭДС элемента, в котором обратимо протекает реакция 0.5 Hg2Cl2 + Ag = AgCl + Hg, равна 0.456 В при 298 К и 0.439 В при 293 К. Рассчитать G, H и S реакции. (ответ)

12-7. Вычислить тепловой эффект реакции Zn + 2AgCl = ZnCl2 + 2Ag, протекающей в гальваническом элементе при 273 К, если ЭДС элемента E= 1.015 В и температурный коэффициент ЭДС = — 4.02 . 10 -4 В . K -1 . (ответ)

12-8. В гальваническом элементе при температуре 298 К обратимо протекает реакция Cd + 2AgCl = CdCl2 + 2Ag. Рассчитать изменение энтропии реакции, если стандартная ЭДС элемента E o = 0.6753 В, а стандартные энтальпии образования CdCl2 и AgCl равны -389.7 и -126.9 кДж . моль -1 соответственно. (ответ)

12-9. ЭДС элемента Pt | H2 | HCl | AgCl | Ag при 25 o C равна 0.322 В. Чему равен pH раствора HCl . (ответ)

12-10. Растворимость Cu3(PO4)2 в воде при 25 o C равна 1.6 . 10 -8 моль . кг -1 . Рассчитать ЭДС элемента Pt | H2 | HCl (pH = 0) | Cu3(PO4)2 (насыщ. р-р) | Cu при 25 o C. (ответ)

12-11. Три гальванических элемента имеют стандартную ЭДС соответственно 0.01, 0.1 и 1.0 В при 25 o C. Рассчитать константы равновесия реакций, протекающих в этих элементах, если количество электронов для каждой реакции n = 1. (ответ)

12-12. ЭДС элемента Pt | H2 | HBr | AgBr | Ag в широком интервале температур описывается уравнением: E o (В) = 0.07131 — 4.99 . 10 -4 (T — 298) — 3.45 . 10 -6 (T — 298) 2 . Рассчитать G o , H o и S o реакции, протекающей в элементе, при 25 o C. (ответ)

12-13. Для измерения pH раствора можно применять хингидронный электрод. (Хингидрон, Q . QH2, представляет собой комплекс хинона, Q = C6H4O2, и гидрохинона, QH2 = C6H4O2H2). Электродная полуреакция записывается как Q + 2H + + 2e QH2, стандартный потенциал E o = +0.6994 В. Если элемент Hg | Hg2Cl2 | HCl | Q . QH2 | Pt имеет ЭДС +0.190 В, каков pH раствора HCl . (ответ)

12-14. В гальваническом элементе обратимо протекает реакция CuSO4 + Zn = ZnSO4 + Cu. Рассчитать H и S реакции, если ЭДС элемента равна 1.960 В при 273 К и 1.961 В при 276 К. (ответ)

12-15. В элементе Вестона протекает реакция Cd + Hg2SO4 = Cd 2+ + 2Hg. Рассчитать ЭДС этого элемента при 303 K, если H и S протекающей в нем реакции равны соответственно -198.8 кДж . моль -1 и -7.8 Дж . моль -1 K -1 . (ответ)

12-16. H реакции Pb + 2AgCl = PbCl2 + 2Ag, протекающей в гальваническом элементе, равно -105.1 кДж . моль -1 . ЭДС этого элемента равна 0.4901 В при 298.2 K. Рассчитать ЭДС элемента при 293.2 K. (ответ)

Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору

В настоящем разделе представлены типовые задачи на гальванические элементы: Определение ЭДС гальванического элемента, составление схемы гальванического элемента, определение энергии химической реакции в кДж.

Читайте также:  Атлас конкорд коллекция фрейм

Задача 1. Вычислите значение э.д.с. гальванического элемента:

(-) Mg / MgSO4 // CuSO4 / Cu (+)

Напишите процессы на аноде и катоде, реакцию, генерирующую ток, и определите в кДж энергию химической реакции, превращающуюся в электрическую.

Решение.

Дана схема гальванического элемента, из которой видно, что анодом является магний, а катодом — медь

(-) Mg / MgSO4 // CuSO4 / Cu (+)

А: Mg 0 -2e — = Mg 2+

К : Cu 2+ +2e — = Cu

Mg 0 + Cu 2+ = Mg 2+ + Cu

Вычислим ЭДС гальванического элемента:

ЭДС =0,337 + 2,37 = 2,71 В

ΔG 0 298 = -nFE = -2∙96500∙2,71 = — 523030 Дж = — 523 кДж

Задача 2. Рассчитайте ЭДС гальванического элемента, составленного из стандартного водородного электрода и свинцового электрода, погруженного в 0,01 М раствор PbCl2. На каком электроде идёт процесс окисления, а на каком — восстановление?

Решение.

В данной паре потенциал свинца имеет более отрицательное значение, поэтому анодом является свинец:

А: Pb 0 -2e — = Pb 2+

К: 2 H + +2 e — = H 2

Pb 0 + 2H + = Pb 2+ + H2

Определим электродный потенциал свинца:

E = -0,126 + (0,059/2)∙lg0,01 = -0,185 В

Вычислим ЭДС гальванического элемента:

ЭДС = 0 + 0,185 = 0,185 В

Задача 3. По уравнению токообразующей реакции составьте схему гальванического элемента:

Ni + СuSO4 = NiSO4 + Cu Напишите уравнения анодного и катодного процессов. Рассчитайте стандартную ЭДС.

Решение.

Пользуясь таблицей стандартных электродных потенциалов, найдем E 0 Ni2+/Ni и E 0 Cu2+/Cu

В данной паре потенциал никеля имеет более отрицательное значение, поэтому анодом является никель:

А: Ni 0 -2e — = Ni 2+

К: Cu 2+ +2 e — = Cu 0

Ni 0 + Cu 2+ = Ni 2+ + Cu 0

Ni 0 + CuSO4 = NiSO4 + Cu 0

Составим схему гальванического элемента:

(-) Ni 0 |NiSO4 || CuSO4|Cu 0 (+)

Рассчитаем стандартную ЭДС реакции:

ЭДС = 0,337 – (- 0,250) = 0,587 В

Задача 4. Составьте схему гальванического элемента из магния и свинца, погруженных в растворы их солей с концентрацией ионов:

[Mg 2+ ] = 0,001 моль/л, [Pb 2+ ] = 1 моль/л. Напишите уравнения реакций, протекающих на катоде и аноде. Рассчитайте стандартную ЭДС этого элемента.

Решение.

Пользуясь таблицей стандартных электродных потенциалов, найдем E 0 Mg2+/Mg и E 0 Pb2+/Pb

В данной паре потенциал магния имеет более отрицательное значение и является анодом:

А: Mg 0 -2e — = Mg 2+

К: Pb 2+ +2 e — = Pb 0

Mg 0 + Pb 2+ = Mg 2+ + Pb 0

Составим схему гальванического элемента:

(-) Mg 0 |Mg 2+ || Pb 2+ |Pb 0 (+)

Применяя уравнение Нернста, найдем EPb2+/Pb и EMg2+/Mg заданной концентрации:

Рассчитаем стандартную ЭДС реакции

ЭДС = -0,126 – (-2,46) = 2,334 В

Задача 5. Как изменится (увеличится, уменьшится) или останется постоянной масса пластины из кобальта, погруженной в раствор, содержащий соли Fe (II), Mg, Ag (I). Напишите молекулярные уравнения реакций.

Решение.

Пользуясь таблицей стандартных электродных потенциалов, найдем E 0 Mg2+/Mg, E 0 Co2+/Co, E 0 Fe2+/Fe, E 0 Ag+/Ag

Протекание реакции возможно при условии, когда E 0 восст 0 ок.

В нашем случае восстановителем является кобальт и условие E 0 восст 0 ок соблюдается только для пары

Co 0 + Ag + = Co 2+ + Ag 0

Молекулярное уравнение, например:

В процессе пластина из кобальта будет растворяться, но одновременно на ее поверхности будет осаждаться серебро.

Из уравнения реакции видно, что при взаимодействии 1 моль кобальта, образуется 2 моль серебра.

Мольная масса кобальта M(Co) = 59 г/моль, мольная масса серебра M(Ag) = 108 г/моль.

Найдем массы металлов:

n = m/M, m = n∙M

m(Ag) = 2∙108 = 216 г.

Таким образом, масса осажденного серебра больше, чем масса растворенного кобальта, т.е. масса пластины из кобальта увеличится.

В случаях, когда пластина опущена в раствор соли железа или соли магния ее масса не изменится, т.к. кобальт не вытесняет эти металлы из их солей. Т.е. реакции не происходит и масса пластины остается неизменной.

Задача 6. Составьте схему гальванического элемента, уравнения полуреакций анодного и катодного процессов, молекулярное уравнение реакции, проходящей при работе гальванического элемента, анодом которого является никель. Подберите материал для катода. Рассчитайте стандартную ЭДС этого гальванического элемента.

Решение.

По условию задачи материал анода известен – никель. Электродный потенциал анода всегда имеет более отрицательное значение, т.е. анод состоит из более активного металла, чем катод.

Поэтому нам надо подобрать такой металл, значение потенциала которого, будет иметь большее значение, чем значение электродного потенциала никеля. Например, медь:

Составим уравнения полуреакций анодного и катодного процессов и молекулярное уравнение реакции, проходящей при работе гальванического элемента.

А: Ni 0 -2e — = Ni 2+

К: Cu 2+ +2 e — = Cu 0

Ni 0 + Cu 2+ = Ni 2+ + Cu 0

Ni 0 + CuSO4 = NiSO4 + Cu 0

Составим схему гальванического элемента:

(-) Ni 0 |NiSO4 || CuSO4|Cu 0 (+)

Рассчитаем стандартную ЭДС реакции

Ссылка на основную публикацию
Adblock detector