Расчет кпд насоса формула

Расчет кпд насоса формула

ЛЕКЦИЯ 2

ОСНОВНЫЕ ПАРАМЕТРЫ РАБОТЫ НАСОСОВ

Подача, напор, мощность, КПД.

Высота всасывания.

Теоретические основы движения жидкости в центробежном насосе.

Характеристики центробежных насосов. Виды характеристик.

Подача, напор, мощность, КПД

Работа центробежного насоса характеризуется такими основными параметрами.

Подача – количество жидкости, которое подается насосом в напорный патрубок за единицу времени. Как следует из определения, расход жидкости, проходящей в трубопроводе, равен подаче нагнетателя, сообщающего этой жидкости движение. Различают понятия объемной Q и массовой подачи насоса M, которые связаны между собой таким соотношением:

(2.1)

где r- плотность жидкости при температуре перекачки.

При установившемся движении и неизменной плотности жидкости расход равен:

(2.2)

где F – поперечное сечение трубопровода, м 2

υ – средняя скорость потока, м/с

Напор понятие энергетическое.Напором (Н) называется приращение удельной энергии потока среды (энергии, отнесенной к массе 1 кг) при прохождении ее через рабочие органы насоса.

Принято различать напор манометрический, который определяется по показаниям приборов у всасывающего и напорного патрубков, и напор требуемый, подсчитанный по схеме насосной установки.

Рис. 2.1. Схема насосной установки: 1 – насос; 2 – электродвигатель; 3 – задвижка; 4 – манометр; 5 – напорный трубопровод; 6 – резервуар приемник; 7 – вакуумметр; 8 – всасывающий трубопровод; 9 – резервуар отборник; 10 – приемный клапан.

Обозначим: рм – давление, показываемое манометром, Па; рв – давление, показываемое вакуумметром Па, НВ – геометрическая (геодезическая) высота всасывания, м; НГГВСГН – полная геометрическая высота подъема жидкой среды, м; Zв – превышение вакуумметра над точкой его подключения, м; Zм – превышение манометра над точкой его подключения, м; Z – разность уравнении сечений (I-I) и (II-II), м; — напор жидкости на входе в насос по отношению к плоскости отсчета, проходящей через ось насоса, м; — напор жидкой среды на выходе из насоса по отношению к той же плоскости отсчета, м.

Тогда согласно определению напора

(2.3)

Т.к. а ,

Напор насоса будет равен:

(2.4)

В выражении (2.4) сумма первых двух членов представляет собой разность избыточных давлений в сечениях I-I и II –II, приведенных к оси насоса, и называется манометрическим напором.

(2.5)

Определим требуемый напор по схеме установки:

Из уравнения Бернулли для сечений 0-0 и I-I (приняв за плоскость сравнения нижний уровень)

Из уравнений Бернулли для сечений II –II и К-К (приняв за плоскость сравнения ось насоса)

Найдем значение напора, рассматривая правые части уравнений (левые рассмотрены при определении манометрического напора.)

Сумма потерь во всасывающем и нагнетательном трубопроводах , а

Поэтому требуемый напор

(2.6)

Полные потери напора в трубопроводе складываются из потери напора на трение и суммы потерь на местные сопротивления:

Таким образом, в общем случае напор насоса расходуется на преодоление противодавления в напорном резервуаре, геометрическую высоту подъема жидкой среды и преодоление сопротивлений в трубопроводе.

Мощность.Под мощностью понимают энергию, сообщаемую или затрачиваемую в единицу времени. Используя такие понятия, как напор насоса можно определить полезную мощность потока жидкости, выходящей из нагнетателя. Если каждой единице веса капельной жидкости сообщается энергия Н, то при весовой подаче насоса, равной , жидкость выходит из насоса, обладая полезной мощностью

(2.7)

В любой насосной установке мощность в различных ее узлах не одинакова. Чаще всего приводом для нагнетателя является электродвигатель, который потребляет мощность Nэ. Эта мощность в электродвигателе преобразуется в механическую мощность, которая выходит от электродвигателя в виде мощности на валу Nв. Вполне естественно, что мощность на валу меньше, чем мощность электрическая, так как часть мощности теряется при работе электродвигателя. Потери мощности в электродвигателе учитываются КПД электродвигателя (ηэ) в виде зависимости

Читайте также:  Какой фирмы лучше молокоотсос

. (2.8)

Таким образом, нагнетателю подается мощность на валу, или как ее называют, потребляемая мощность нагнетателя.

Коэффициент полезного действия насоса (КПД).

Потери мощности в нагнетателе, определяемые величиной ηн , подразделяют на гидравлические, объемные и механические.

Механическими являются потери мощности на различные виды трения в рабочем органе нагнетателя, hм — механический КПД; который учитывает механические потери энергии в подшипниках, уплотнениях насоса, а также при трении диска рабочего колеса о жидкость.

Объемные потери возникают в результате утечек жидкости через уплотнения в нагнетателе, а также перетоков из областей высокого давления в области низких, обусловленных особенностями конструкций. Перетоки отмечаются в лопастных нагнетателях. Там жидкость может перетекать обратно во всасывающий патрубок с периферии рабочего колеса через зазоры между рабочим колесом и корпусом нагнетателя, hо — объемный КПД, который учитывает потери энергии вследствие утечек жидкости в насосе.

Гидравлический КПД учитывает потери, которые возникают вследствие наличия гидравлических сопротивлений в подводе, рабочем колесе и отводе, hг — гидравлический КПД, который учитывает потери энергии на преодоление гидравлического сопротивления при прохождении жидкости через насос.

Числовые значения составляющих КПД насоса зависят от конструкции насоса, качества его изготовления и условий эксплуатации. Они могут быть определены опытным путем и в лабораторных условиях.

Таким образом, КПД нагнетателя равен произведению гидравлического механического и объемного КПД:

(2.9)

Высота всасывания

Высота всасывания является важным параметром при проектировании насосной установки. Она определяет высотное расположение насоса по отношению к отметке уровня воды в приемном резервуаре или источнике, из которого жидкая среда перекачивается насосом. Неточности ее расчета могут привести к ухудшению и даже полному срыву работы насоса.

Всасывание жидкости насосом происходит под действием разности внешнего давления Р в приемном резервуаре и давления Р1 на входе в насос или разности напоров . Согласно уравнению Бернулли, разность напоров затрачивается на подъем жидкости на высоту всасывания Нвс, на движение жидкости со скоростью υ, т.е. созданию скоростного напора , и на преодоление гидравлических потерь во всасывающей трубе hвс. Если жидкость засасывается из открытого бака, то внешнее давление равно атмосферному и можно записать равенство

Чтобы происходило всасывание, давление Р1 должно быть больше давления Рн.п. насыщенных паров жидкости при данной температуре. Тогда с учетом приведенного выше равенства условие нормальной работы насоса выразится следующим образом:

(2.10)

(2.11)

Из выражения (2.11) следует, что высота всасывания насоса уменьшается со снижением барометрического давления Ра и с увеличением давления паров Рн.п.. величина Рн.п возрастает с повышением температуры, поэтому при повышении температуры жидкости допустимая высота всасывания уменьшается. Когда давление Р1 становится равным Рн.п , из жидкости начинают интенсивно выделяться пары и растворенные в ней газы. При этом, под действием противодавления Рн.п паров и газов высота всасывания снижается и может достигнуть нуля.

Высота всасывания снижается также при увеличении скорости жидкости во всасывающей трубе и соответствующем возрастании потерь hвс. Обычно высота всасывания при перекачивании холодных жидкостей не превышает 5-6 м; при перемещении нагретых жидкостей она может быть значительно меньше. Поэтому горячие, а также вязкие жидкости подводят к насосу с избыточным давлением или с подпором на стороне всасывания.

Читайте также:  Парник грядка для огурцов

Выражение (2.11) является общим для всех насосов, хотя процессы всасывания и нагнетания существенно отличаются для насосов различных типов.

Дата добавления: 2016-04-06 ; просмотров: 8624 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Гидравлическая мощность и КПД центробежных насосов

Гидравлическая мощность насоса

PГ = ρ x g x Q x H [Вт]

ρ — плотность жидкости [кг/м 3 ]
g — ускорение свободного падения [м/сек 2 ]
Q — расход [м 3 /сек]
H — напор [м]

Для насосов, у которых всасывающий и напорный патрубки имеют одинаковый диаметр и находятся на одном уровне, напор можно рассчитать по упрощённой формуле:

H = (p2 — p1) / (ρ x g) [м]

p2 — давление на напорном патрубке [Па]
p1 — давление на всасывающем патрубке [Па]

Таким образом, гидравлическая мощность насоса пропорциональна перепаду давления и расходу:

Если диаметр напорного патрубка меньше диаметра всасывающего патрубка, то для расчёта гидравлической мощности насоса напор необходимо увеличить на величину:

v2 — скорость жидкости в напорном патрубке [м/с]
v1 — скорость жидкости во всасывающем патрубке [м/с]
Q — расход [м 3 /с]
g — ускорение свободного падения [м/с 2 ]
d2 — внутренний диаметр напорного патрубка [м]
d1 — внутренний диаметр всасывающего патрубка [м]

Если напорный и всасывающий патрубок расположены не на одной линии, то напор нужно ещё увеличить на разницу высот между двумя патрубками:

Потребляемая мощность насоса

Если вал насоса жёстко соединён с валом двигателя, то потребляемая мощность насоса равна механической мощности на валу электродвигателя.

КПД насоса

КПД насоса равен отношению гидравлической мощности к потребляемой:

Насос выбирается так, чтобы в рабочей точке его КПД был максимальным (см. рис.).

Механическая мощность на валу электродвигателя:

ηД — КПД электродвигателя,
PЭ — электрическая мощность, потребляемая двигателем из сети.

Электрическая мощность, потребляемая 3-х фазным электродвигателем из сети

PЭ = √3 х U х I х cos φ

U — напряжение сети [В]
I — ток, потребляемый электродвигателем [А]
cos φ — косинус угла между векторами тока и напряжения

Выводы: как вычислить КПД насоса

  • С помощью специального прибора с токовыми клещами измеряем электрическую мощность PЭ, потребляемую электродвигателем из сети. Если электродвигатель работает от преобразователя частоты, то ПЧ сам измеряет мощность и сохраняет это значение в одном из своих параметров
  • С шильдика электродвигателя списываем его КПД и вычисляем мощность на валу PВ. На шильдике, конечно, указана и номинальная мощность электродвигателя, но в данном случае нас интересует мощность электродвигателя в рабочей точке насоса
  • Если между двигателем и насосом существует жёсткая механическая связь (а не ременная передача, редуктор или муфта с проскальзыванием), то считаем потребляемую насосом мощность РП равной мощности на валу электродвигателя РВ
  • Измеряем перепад давления на напорном и всасывающем патрубках и вычисляем напор (если необходимо, то корректируем его с учётом разницы диаметров и высот напорного и всасывающего патрубков)
  • Измеряем расход и рассчитываем гидравлическую мощность насоса РГ
  • Вычисляем КПД насоса.

Если КПД насоса оказался ниже, чем вы ожидали, то стоит задуматься о профилактике, ремонте или замене насоса.

КПД насоса

КПД любого механизма представляет собой отношение его полезной мощности к потребляемой. Это отношение обозначается греческой буквой n (эта). Поскольку не существует такого понятия как "привод, не имеющий потерь", n всегда меньше 1 (100 %). Для циркуляционного насоса системы отопления общий КПД определяется значением КПД мотора nM (электрического и механического) и КПД насоса np. Произведение этих двух значений представляет собой общий КПД ntot.
ntot = nM • np

Читайте также:  Детские качалки своими руками из дерева

КПД насосов разных типов и размеров могут отличаться в очень широком диапазоне. Для насосов с мокрым ротором КПД ntot равен от 5% до 54 % (высокоэффективные насосы); для насосов с сухим ротором ntot равен от 30 % до 80%. Даже в пределах характеристики насоса текущий КПД в тот или иной момент времени меняется от нуля до максимального значения. Если насос работает при закрытом клапане, создается высокое давление, но вода не перемещается, поэтому КПД насоса в этот момент равняется нулю. То же самое справедливо при открытой трубе. Несмотря на большое количество перекачиваемой воды, давление не создается, а значит КПД равняется нулю.

Самый большой общий КПД циркуляционного насоса системы отопления достигается в средней части характеристики насоса. В каталогах производителей насосов эта оптимальная рабочая характеристика указана отдельно для каждого насоса.

Насос никогда не работает при постоянной подаче. Поэтому, при расчете насосной системы, убедитесь, что рабочая точка насоса находится в средней трети характеристики насоса большую часть отопительного сезона. Это гарантирует работу насоса при оптимальном КПД.

КПД насоса определяется по следующей формуле:

np=Q • H • p/3670 • P2

np = КПД насоса
Q [м3/ч] = Подача
H [м] = Напор
P2 [кВт] = Мощность насоса
3670 = Постоянный коэффициент
p [кг/м3] = Плотность жидкости

КПД насоса зависит от его конструкции. В следующих таблицах показаны значения КПД в зависимости от мощности выбранного мотора и конструкции насоса (с мокрым ротором/с сухим ротором).

Насосы с мотором
мощностью
P2 ntot до 100 Вт прибл. 5 % прибл. 25 % от 100 до 500 Вт прибл. 20 % прибл. 40 % от 500 до 2500 Вт прибл. 30 % прибл. 50 %

Насосы с мотором
мощностью
P2 ntot
до 1,5 кВт прибл. 30 % прибл. 65%
от 1,5 до 7,5 кВт прибл. 35 % прибл. 75%
от 7,5 до 45,0 кВт прибл. 40 % прибл. 80%

Потребление энергии центробежными насосами

Мотор приводит во вращение вал насоса, на котором установлено рабочее колесо. В насосе создается повышенное давление и жидкость перемещается через него, что является результатом преобразования электрической энергии в гидравлическую. Энергия, необходимая мотору, называется потребляемой энергией P1 насоса.

Выходные характеристики насосов
Выходные характеристики центробежных насосов приведены на графике: вертикальная ось, ордината, означает потребляемую энергию P1 насоса в ваттах [Вт]. Горизонтальная ось или абсцисса показывает подачу Q насоса в кубических метрах в час [м3/ч]. В каталогах характеристики напора и мощности часто объединяются для наглядной демонстрации взаимосвязи. Выходная характеристика демонстрирует следующую взаимосвязь: мотор потребляет минимум энергии при низкой подаче. При увеличении подачи потребление энергии также увеличивается.

Влияние частоты вращения мотора
При изменении частоты вращения насоса и неизменных остальных условиях системы потребление энергии P изменяется пропорционально значению частоты n в кубе.
P1/P2 = (n1/n2) 3

На основании данных соображений, изменяя частоту вращения насоса можно адаптировать насос к требуемой тепловой нагрузке потребителя. При увеличении частоты вращения в два раза, подача увеличивается в той же пропорции. Напор возрастает в четыре раза. Поэтому, энергия, потребляемая приводом, получается умножением примерно на восемь. При снижении частоты, подача, напор в трубопроводе и потребление энергии уменьшаются в той же пропорции.

Постоянная частота вращения, обусловленная конструкцией
Отличительной характеристикой центробежного насоса является то, что напор зависит от используемого мотора и его частоты вращения. Насосы с частотой n > 1500 об/мин называются быстроходными насосами, а те, у которых частота n

Ссылка на основную публикацию
Adblock detector