Принцип работы синтезатора частоты

Принцип работы синтезатора частоты

Синтезатор частот — устройство для генерации периодических сигналов (гармонических колебаний, или электрических тактовых сигналов) с определёнными частотами с помощью линейных повторений (умножением, суммированием, разностью) на основе одного или нескольких опорных генераторов. Синтезаторы частот служат источниками стабильных (по частоте) колебаний в радиоприёмниках, радиопередатчиках, частотомерах, испытательных генераторах сигналов и других устройствах, в которых требуется настройка на разные частоты в широком диапазоне и высокая стабильность выбранной частоты. Стабильность обычно достигается применением фазовой автоподстройки частоты или прямого цифрового синтеза (DDS) с использованием опорного генератора с кварцевой стабилизацией. Синтез частот обеспечивает намного более высокую точность и стабильность, чем традиционные электронные генераторы с перестройкой изменением индуктивности или ёмкости, очень широкий диапазон перестройки без каких-либо коммутаций и практически мгновенное переключение на любую заданную частоту.

Содержание

Аналоговые синтезаторы [ править | править код ]

Основной функцией абсолютно любого синтезатора является преобразование опорного сигнала (reference) в требуемое количество выходных сигналов. Аналоговые синтезаторы (Direct Analog Synthesizers) реализуются путём смешения отдельных базовых частот с их последующей фильтрацией. Базовые частоты могут быть получены на основе низкочастотных (кварцевые и ПАВ-резонаторы) или высокочастотных (диэлектрический, сапфировый, волноводный, керамический резонаторы) генераторов посредством умножения, деления или фазовой автоподстройки частоты.

Главным преимуществом аналоговых синтезаторов является чрезвычайно высокая скорость переключения, лежащая в микро или даже наносекундном диапазоне. Ещё одно преимущество: использование компонентов (например, смесителей) с исключительно малым уровнем собственных шумов по сравнению с источниками базовых частот. Т.е., шумы аналогового синтезатора определяются в основном шумами используемых базовых источников и могут быть весьма низкими.

Основной недостаток указанной топологии – ограниченные диапазон и разрешение по частоте. Количество генерируемых сигналов можно увеличить, введя большее число базовых частот и/или смесительных каскадов. Однако такой подход требует большего числа компонентов и, следовательно, усложняет систему. Эффективным решением является использование цифрового синтезатора (Direct Digital Synthesizer – DDS) для увеличения минимального частотного шага, требуемого от аналоговой части.Еще одна серьезная проблема – множество нежелательных спектральных составляющих, которые генерируют смесительные каскады. Они должны быть тщательно отфильтрованы. Необходимо также обеспечить изоляцию переключаемых фильтров. Существует немало различных схем организации смесителей и фильтров, все они, как правило, требуют большого числа компонентов для обеспечения малого частотного шага и широкого диапазона частот. Таким образом, хотя аналоговые синтезаторы и предлагают исключительно высокую скорость перестройки и малые шумы, их использование ограничено из-за довольно высоких стоимостных характеристик.

Цифровые синтезаторы [ править | править код ]

В отличие от традиционных (аналоговых) решений, цифровые синтезаторы используют цифровую обработку для получения требуемой формы выходного сигнала из базового (тактового) сигнала. Сначала с помощью фазового аккумулятора создаётся цифровое представление сигнала, а затем генерируется и сам выходной сигнал (синусоидальной или любой другой желаемой формы) посредством цифро-аналогового преобразователя (ЦАП).Скорость генерации цифрового сигнала ограничена цифровым интерфейсом, но весьма высока и сопоставима с аналоговыми схемами. Цифровые синтезаторы также обеспечивают довольно малый уровень фазовых шумов. Однако основным достоинством цифрового синтезатора является исключительно высокое разрешение по частоте (ниже 1 Гц), определяемое длиной фазового аккумулятора. Главные недостатки – ограниченный частотный диапазон и большие искажения сигнала. В то время как нижняя граница рабочего диапазона частот цифрового синтезатора находится близко к нулю герц, его верхняя граница, в соответствии с теоремой Котельникова, не может превышать половины тактовой частоты. Кроме того, реконструкция выходного сигнала невозможна без фильтра нижних частот, ограничивающего диапазон выходного сигнала приблизительно до 40% тактовой частоты.

Другая серьезная проблема – высокое содержание нежелательных спектральных составляющих из-за ошибок преобразования в ЦАП. С этой точки зрения цифровой синтезатор ведёт себя как частотный смеситель, генерирующий побочные составляющие на комбинационных частотах. В то время как частотное местоположение этих составляющих можно легко вычислить, их амплитуда гораздо менее предсказуема. Как правило, искажения более низкого порядка имеют наиболее высокую амплитуду. Тем не менее, искажения высокого порядка также приходится учитывать при разработке архитектуры конкретного синтезатора. Амплитуда паразитных спектральных составляющих увеличивается и с увеличением тактовой частоты, что также ограничивает диапазон генерируемых частот. Практические значения верхней границы диапазона находятся в районе от нескольких десятков до нескольких сотен мегагерц при уровне дискретных спектральных продуктов -50…-60 дБн. Очевидно, прямое умножение выходного сигнала частотного синтезатора невозможно из-за дальнейшей деградации спектрального состава.

Существует много аппаратных и программных решений, призванных улучшить спектральный состав цифрового синтезатора. Аппаратные методы обычно основаны на переносе сигнала цифрового синтезатора вверх по частоте и его последующем делении.

Этот метод уменьшает содержание нежелательных спектральных продуктов на 20 дБ/октаву. К сожалению, при этом также уменьшается диапазон генерируемых частот. Для расширения диапазона частот на выходе синтезатора приходится увеличивать число базовых частот и фильтров – подобно тому, как это делается в аналоговых схемах.

Программные методы основываются на том, что частоты побочных искажений синтезатора являются функцией частоты дискретизации ЦАП. Таким образом, для каждой конкретной выходной частоты синтезатора побочные искажения могут быть сдвинуты по частоте (а в дальнейшем и отфильтрованы) путём изменения частоты дискретизации ЦАП. Этот метод особенно эффективен, если тактовые импульсы для ЦАП генерировать с использованием систем на основе ФАПЧ. Следует отметить, что программный метод работает достаточно эффективно для подавления искажений относительно малого порядка. К сожалению, плотность дискретных спектральных продуктов обычно увеличивается пропорционально их порядку. Поэтому программным методом удается отфильтровать искажения только до уровня -70…-80 дБн.

Таким образом, из-за ограниченного диапазона частот и высокого содержания нежелательных спектральных продуктов цифровые синтезаторы редко используются для непосредственного генерирования СВЧ сигнала. В то же время их широко применяют в более сложных аналоговых и ФАПЧ системах, чтобы обеспечить высокое разрешение по частоте.

Синтезаторы с ФАПЧ [ править | править код ]

Типичный однопетлевой синтезатор с ФАПЧ включает в себя перестраиваемый генератор, управляемый напряжением (ГУН), сигнал которого после требуемого (программируемого) деления по частоте доставляется ко входу фазового детектора (PD) Другой вход фазового детектора подключен к источнику опорного сигнала (reference), частота которого равна требуемому частотному шагу. Фазовый детектор сравнивает сигналы на обоих входах и генерирует сигнал ошибки, который после фильтрации и усиления (при необходимости) подстраивает частоту ГУН к

Читайте также:  Как снять крыльчатку с кулера

f = f R E F ∗ N <displaystyle f=f_*N>

где FREF – частота опорного сигнала на входе фазового детектора.

Главными преимуществами схем на основе ФАПЧ являются более чистый спектр выходного сигнала, обусловленный эффективным использованием фильтра нижних частот (ФНЧ), и значительно меньшая сложность устройства по сравнению с аналоговыми синтезаторами. Основной недостаток – большее время перестройки и значительно более высокий уровень фазового шума по сравнению с аналоговыми схемами. Фазовый шум синтезатора в пределах полосы пропускания фильтра ФАПЧ равен

λ = λ P D + 20 l o g N <displaystyle lambda =lambda PD+20logN>

где λPD – пересчитанный ко входу фазового детектора суммарный уровень фазовых шумов опорного сигнала, фазового детектора, фильтра и усилителя цепи обратной связи. Таким образом, фазовый шум зависит от коэффициента деления частотного делителя, который, чтобы обеспечить требуемое разрешение по частоте, может быть довольно большим. Так, для получения сигнала на частоте 10 ГГц с разрешением 1 МГц коэффициент деления должен быть равен 10000, что соответствует увеличению фазового шума на 80 дБ. Кроме того, программируемые делители используются на относительно низких частотах, что требует введения дополнительного высокочастотного делителя с фиксированным коэффициентом деления (prescaler – PS). В результате увеличивается суммарный коэффициент деления петли обратной связи и, как следствие, возрастает фазовый шум. Очевидно, такая простая схема не позволяет использовать шумовые возможности современных малошумящих генераторов опорного сигнала. В итоге однопетлевые схемы с ФАПЧ применяются редко, а именно, в системах с низкими требованиями к качеству генерируемого сигнала.

Основные характеристики синтезатора можно значительно улучшить, включив частотный преобразователь (смеситель) в цепь обратной связи. При этом сигнал ГУН переносится вниз по частоте, что позволяет значительно уменьшить коэффициент деления цепи обратной связи. Опорный сигнал смесителя генерируется с помощью дополнительной петли ФАПЧ (многопетлевые схемы) или умножителя частоты. Удачным решением является применение смесителя гармоник, который использует многочисленные гармоники опорного сигнала, генерируемые встроенным в смеситель диодом. Смеситель гармоник позволяет значительно упростить конструкцию синтезатора. При этом следует отметить исключительно высокую чувствительность данного типа смесителя к параметрам отдельных элементов схемы, оптимизация которых – далеко не тривиальная задача. В зависимости от конкретных требований к фазовым шумам и разрешению по частоте возможно введение большего числа смесительных каскадов, что, однако, усложняет конструкцию синтезатора. Другой проблемой, связанной с применением схем, основанных на частотном преобразовании, является ложный захват частоты (например, при использовании зеркального канала смесителя). Поэтому необходимо предварительно достаточно точно настроить частоту ГУН, например с помощью ЦАП. Это, в свою очередь, требует исключительно высокой линейности (и повторяемости) зависимости выходной частоты ГУН от управляющего напряжения в рабочем температурном диапазоне, а также точной калибровки ГУН для компенсации температурного дрейфа данной зависимости. Кроме того, цифро-аналоговые преобразователи обычно отличаются повышенным уровнем шумов, что влияет на шумовые характеристики синтезатора и требует выведения ЦАП из петли ФАПЧ после предварительной настройки на требуемую частоту.

Снизить суммарный коэффициент деления можно и путём использования дробных коэффициентов деления – делением частоты на N+1 каждые М периодов сигнала и делением на N в течение остального промежутка времени. В этом случае усредненный коэффициент деления равен

( N + 1 ) / M <displaystyle (N+1)/M>

где N и М – целые числа. Для заданного размера частотного шага схемы с дробным коэффициентом деления позволяют использовать более высокую частоту сравнения на входе фазового детектора, что приводит к уменьшению фазового шума и увеличению скорости перестройки синтезатора. Основной недостаток техники дробного деления – повышенное содержание негармонических спектральных составляющих из-за фазовых ошибок, присущих механизму дробного деления.

Основные элементы цифрового синтезатора частот. [ править | править код ]

Поясним, что под термином «цифровой синтезатор частот», применительно к системам импульсно-фазовой автоподстройки частоты (ИФАП) (или [Impulse] Phase Locked Loop — PLL), мы понимаем цифровые, использующие в основном цифровую схемотехнику, элементы кольца ИФАП:

  • тракт формирования частоты опорного сигнала;
  • тракт приведения частоты перестраиваемого генератора (ГУН) или Voltage Controlled Oscillator (VCO);
  • частотно-фазовый детектор (ЧФД) или Phase Frequency Detector with Charge Pump.

Тракт формирования частоты опорного сигнала представляет собой делитель с фиксированным целочисленным коэффициентом деления (ДФКД) или Reference Div > R <displaystyle R> может устанавливаться внешним управляющим словом, например, от 1 до 16384.

Тракт приведения частоты перестраиваемого генератора — это делитель с переменным коэффициентом деления в N <displaystyle N> раз (ДПКД) или Divider with a float factor of division, integer-N Divider, его коэффициент деления также устанавливается внешним кодом и может изменяться с единичным шагом.

В низкочастотных синтезаторах (например, в ADF4001) тракт деления частоты ГУН в N раз выполнен на обычных счетчиковых делителях частоты ДПКД, поскольку используемая технология КМОП (CMOS) позволяет реализовывать триггеры счетчика со временем переключения до 4–6 нс.

Поэтому и тракт деления частоты опорного генератора ДФКД обеспечивает надёжную работу синтезатора до значений F R E F ≤ 250 <displaystyle F_leq 250> МГц (например, в ADF4106). Следует отметить, что все синтезаторы серии ADF4000 обеспечивают минимальный коэффициент деления опорной частоты R = 1 <displaystyle R=1> .

Введение «прескалера», или двухмодульного предварительного делителя частоты, позволило поднять рабочую частоту ДПКД до современных значений (например, до 4 ГГц у синтезатора ADF4113 и до 6 ГГц у синтезатора ADF4106). Минимальный модуль прескалера P M I N = 8 <displaystyle P_=8> позволяет обеспечить NMIN = 56.

Выходную частоту синтезатора можно определить по формуле:

[ ( P ∗ B ) + A ] ∗ F R E F R <displaystyle <frac <[(P*B)+A]*F_>>>

где:
f V C O <displaystyle f_> — выходная частота синтезатора;
P <displaystyle P> — модуль прескалера;
B <displaystyle B> — коэффициент деления счётчика В;
A <displaystyle A> — коэффициент деления счётчика A (0 ≤ A F R E F <displaystyle F_> — частота опорного колебания;
R <displaystyle R> — коэффициент деления опорного делителя.

Любой прескалер состоит из поглощающего счетчика Swallowing Counter и схемы поглощения импульса P / P + 1 <displaystyle P/P+1> . Суммарная задержка переключения этих узлов не должна быть кратной периоду входного колебания, то есть активные перепады входных и управляющих импульсов не должны совпадать. В противном случае возникает эффект «состязаний» и устройство начинает работать со сбоями. На практике стараются, чтобы величина суммарной задержки в прескалере не превышала минимального периода входного колебания. Иными словами, задержка в прескалере определяет максимальную рабочую частоту микросхемы.

Интересной особенностью работы прескалера в синтезаторах ADF4110(1/2/3) является так называемый режим ресинхронизации, или восстановления синхронизации входной радиочастоты на выходе прескалера — resynchronizing the prescaler output.

Читайте также:  Лазерный уровень синий луч

В режиме синхронизации работы прескалера моменты его переключения из режима «деление на P <displaystyle P> » в режим «деление на P + 1 <displaystyle P+1> » стробируются частотой входного сигнала RF. Стробирование уменьшает фазовый шум N <displaystyle N> -делителя (джиттер), но предъявляет более жёсткие требования к величине и стабильности внутренних задержек микросхемы. Поэтому максимальная входная частота на входе RF, при которой синтезатор надёжно работает, может уменьшиться.

Синтез частот — формирование дискретного множества частот из одной или нескольких опорных частот fon. Опорной называется высокостабильная частота автогенератора, обычно кварцевого.

Синтезатор частот (СЧ) — устройство, реализующее процесс синтеза. Синтезатор используется в радиоприемных и радиопередающих устройствах систем радиосвязи, радионавигации, радиолокации и другого назначения.

Основными параметрами синтезатора являются: диапазон частот выходного сигнала, количество N и шаг сетки частот Dfш, долговременная и кратковременная нестабильность частоты, уровень побочных составляющих в выходном сигнале и время перехода с одной частоты на другую. В современных синтезаторах число формируемых им дискретных частот может достигать десятков тысяч, а шаг сетки изменяться от десятков герц до десятков и сотен килогерц. Долговременная нестабильность частоты, определяемая кварцевым автогенератором, составляет 10 –6 , а в специальных случаях — 10 –8 …10 –9 . Диапазон частот синтезатора меняется в больших пределах в зависимости от назначения аппаратуры, в которой он используется.

Практические схемы синтезаторов частот весьма разнообразны. Несмотря на это разнообразие, можно отметить общие принципы, лежащие в основе построения современных синтезаторов:

— все синтезаторы основаны на использовании одного высокостабильного опорного колебания с некоторой частотой f, источником которого обычно является опорный кварцевый генератор;

— синтез множества частот осуществляется широким использованием делителей, умножителей и преобразователей частоты, обеспечивающих использование одного опорного колебания для формирования сетки частот;

— обеспечение синтезаторами частот декадной установки частоты возбудителя.

По методу формирования выходных колебаний синтезаторы подразделяются на две группы: выполненные по методу прямого (пассивного) синтеза и выполненные по методу косвенного (активного) синтеза.

К первой группе относятся синтезаторы, в которых выходные колебания формируются путём деления умножения частоты опорного генератора с последующим сложением и вычитанием частот, полученных в результате деления и умножения.

Ко второй группе относятся синтезаторы, формирующие выходные колебания в диапазонном автогенераторе гармонических колебаний с параметрической стабилизацией частоты, нестабильность которого устраняется системой автоматической подстройки частоты (АПЧ) по эталонным (высокостабильным) частотам.

Синтезаторы обоих групп могут быть выполнены с использованием аналоговой или цифровой элементной базы.

Синтезаторы, выполненные по методу прямого синтеза.

Высокостабильный кварцевый генератор ОГ формирует колебания с частотой f, которые поступают на делители и умножители частоты ДЧ и УЧ.

Делители частоты понижают частоту ОГ f в целое число раз (d), а умножители частоты увеличивают её в целое число раз (к). Частоты, полученные в результате деления и умножения частоты опорного генератора (f), используются для формирования опорных частот в специальных устройствах, которые называют датчиками опорных частот ДОЧ. Общее количество датчиков опорных частот в синтезаторе частот СЧ зависит от диапазона формируемых синтезатором частот и интервала между соседними частотами: чем шире диапазон частот СЧ и меньше интервал, тем больше количество ДОЧ требуется. При декадной установке частоты каждый ДОЧ формирует десять опорных частот с определённым интервалом между соседними частотами. Общее количество необходимых датчиков определяется количеством цифр (разрядов) в записи максимальной частоты синтезатора.

Опорные частоты, сформированные в датчиках, подаются на смесители. Полосовые переключаемые фильтры, включённые на выходе смесителей, выделяют в данном примере суммарную частоту: на выходе первого f1 + f2, на выходе второго f1 + f2 + f3, на выходе третьего f1 + f2 + f3 + f4.

Частота на выходе возбудителя при декадной установке определяется положениями переключателей каждой декады.

Относительная нестабильность частоты на выходе синтезатора равна нестабильности ОГ. Недостатком такого типа синтезаторов является наличие на его выходе большого числа комбинационных частот, что объясняется широким использованием смесителей.

Синтезаторы частот, построенные по методу косвенного синтеза

В синтезаторах, выполненных по методу косвенного синтеза, источником выходных колебаний является диапазонный автогенератор гармонических колебаний, автоматически подстраиваемый по высокостабильным частотам, формируемым в блоке опорных частот БОЧ.

Суть автоматической подстройки частоты АПЧ состоит в том, что колебания автогенератора с помощью высокостабильных частот преобразуются к некоторой постоянной частоте fАПЧ, которая сравнивается с эталонным значением частоты. В случае несовпадения сравниваемых частот формируется управляющее напряжение, которое подается на управляемый реактивный элемент и изменяет величину его реактивности (ёмкости или индуктивности).

Управляемые реактивные элементы включаются в контур, определяющий частоту АГ. Частота АГ изменяется до тех пор, пока fАПЧ не приблизится к эталонной частоте с достаточно малой остаточной расстройкой.

В зависимости от устройства сравнения все системы АПЧ можно разделить на три вида:

— системы с частотной автоподстройкой частоты ЧАП, в которой в качестве сравнивающего устройства используются частотные детекторы ЧД;

— системы с фазовой автоподстройкой частоты ФАП, использующие в качестве сравнивающего устройства фазовые детекторы ФД;

— системы с импульсно-фазовой автоподстройкой частоты ИФАП, в которых сравнивающим устройством являются импульсно-фазовые детекторы ИФД.

Синтезаторы с фазовой автоподстройкой частоты ФАП, в отличие от

синтезаторов с ЧАП, не имеют остаточной расстройки. В системе ФАП сравнивающим устройством является фазовый детектор ФД. Управляющее напряжение на выходе ФД пропорционально разности фаз двух поданных на него колебаний, частоты которых в установившемся режиме равны.

На ФД подаются два колебания близких частот: одно из которых является эталонным с частотой f , формируемой в БОЧ, второе является продуктом преобразования колебаний УГ в смесителе с помощью сетки частот f01 с БОЧ

Если fПР и f близки по величине, то с выхода ФД управляющее напряжение скомпенсирует расстройку УГ и fПР = f, в системе устанавливается стационарный режим. Однако система ФАП работает в очень узкой полосе частот, не превышающей единиц кГц. Чтобы обеспечить перестройку УГ во всём его диапазоне частот, в синтезаторе с ФАП применяют систему автопоиска, которая, изменяя частоту УГ во всем диапазоне частот, обеспечивает её попадание в полосу охватывания системы ФАП. Система автопоиска представляет собой автогенератор пилообразного напряжения, который запускается при отсутствии управляющего напряжения на выходе ФНЧ. Как только частоты УГ попадают в полосу схватывания системы ФАП, генератор поиска выключается, система входит в режим автоподстройки с динамическим равновесием fПР=f.

Читайте также:  Стоимость счетчика газа для квартиры

Использование логических элементов в СЧ обусловило появление новых типов синтезаторов, которые называются цифровыми. Они обладают значительными преимуществами по сравнению с аналоговыми. Они более просты, надёжны в эксплуатации, имеют меньшие габариты и массу.

Применение логических интегральных схем в ЦСЧ позволило почти полностью исключить преобразование частоты УГ, заменив преобразователи делителем частоты с переменным коэффициентом деления ДПКД.

Структурная схема синтезатора с одним кольцом фазовой автоподстройки частоты

На схеме ДПКД — делитель с переменным коэффициентом деления — К-разрядный программируемый цифровой счетчик. Назначение других звеньев схемы ясно из сделанных на них надписей. В блоке управления осуществляется прием и хранение данных программирования и формирование кодового сигнала, по которому устанавливается значение коэффициента деления N в зависимости от поступившей на синтезатор команды. В результате действия фазовой автоподстройки частоты устанавливается равенство частот сигналов, поступающих на вход импульсно-фазового дискриминатора: f1=f2, что позволяет записать следующее соотношение для частот стабилизируемого и эталонного автогенераторов с учетом значений коэффициентов деления:

Согласно шаг сетки частот Dfш=fэт/М. Меняя управляемое значение N, устанавливают требуемое значение частоты стабилизируемого генератора, который с помощью управляющего элемента может перестраиваться в требуемом диапазоне частот.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10220 — | 7588 — или читать все.

Цифровой синтезатор частоты – это схема комбинационного синтеза выходной частоты на основе набора высокостабильных опорных частот внутренних гетеродинов. Синтезатор частот позволяет точно установить частоту настройки приемника без участия сигнала принимаемой станции, т.е. независимо от его уровня и колебаний по амплитуде и фазе. поскольку частота современных радиовещательных передатчиков поддерживается постоянной с высокой точностью, настройка приемника при помощи синтезатора частот оказывается стабильной.

Наиболее распространены в бытовых радиоприемных устройствах цифровые синтезаторы частот с частотной автоподстройкой (ЧАП), работающие по методу косвенного синтеза . Структурная схема подобного устройства показана на Рисунок. 8.

Из стабильной опорной частоты кварцевого генератора путем деления частоты образуются стробирующие импульсы, открывающие на строго определенное время счетчик импульсов. Число импульсов, поступающих на счетчик, определяется частотой местного гетеродина. Образовавшийся сигнал поступает в виде двоичного кола на цифровой компаратор и сравнивается с сигналами от регистров установки частоты. При совпадении кодов регистра и счетчика на выходе отсутствует сигнал ошибки. В противном случае сигнал ошибки подается на ЦАП, формирующий управляющее напряжение, используемое для подстройки гетеродина.

Рисунок.8. Структурная схема цифровые синтезаторы частот с частотной автоподстройкой (ЧАП).

Синтезаторы частоты крупными фирмами выпускаются в виде монокристалла, готового для установки в схему всеволнового приемника . Примером такой микросхемы может служить цифровой синтезатор частоты TC914OP японской фирмы Sansui , который помимо перестройки частоты гетеродина также вырабатывает постоянное напряжение для управления смещением варикапов контуров преселектора, а также позволяет подавать напряжение смещения на диапазонные варикапы

Цифровые синтезаторы частот

Синтезатор частот — устройство для генерации электрических гармонических колебаний с помощью линейных повторений (умножением, суммированием, разностью) на основе одного или нескольких опорных генераторов. Синтезаторы частот служат источниками стабильных (по частоте) колебаний в радиоприёмниках, радиопередатчиках, частотомерах, испытательных генераторах сигналов и других устройствах, в которых требуется настройка на разные частоты в широком диапазоне и высокая стабильность выбранной частоты. Стабильность обычно достигается применением фазовой автоподстройки частоты или прямого цифрового синтеза (DDS) с использованием опорного генератора с кварцевой стабилизацией. Синтез частот обеспечивает намного более высокую точность и стабильность, чем традиционные электронные генераторы с перестройкой изменением индуктивности или ёмкости, очень широкий диапазон перестройки без каких-либо коммутаций и практически мгновенное переключение на любую заданную частоту.

Структурная схема цифрового синтезатора частот

В отличие от традиционных (аналоговых) решений, цифровые синтезаторы используют цифровую обработку для получения требуемой формы выходного сигнала из базового (тактового) сигнала. Сначала с помощью фазового аккумулятора создаётся цифровое представление сигнала, а затем генерируется и сам выходной сигнал (синусоидальной или любой другой желаемой формы) посредством цифро-аналогового преобразователя (ЦАП).Скорость генерации цифрового сигнала ограничена цифровым интерфейсом, но весьма высока и сопоставима с аналоговыми схемами. Цифровые синтезаторы также обеспечивают довольно малый уровень фазовых шумов. Однако основным достоинством цифрового синтезатора является исключительно высокое разрешение по частоте (ниже 1 Гц), определяемое длиной фазового аккумулятора. Главные недостатки – ограниченный частотный диапазон и большие искажения сигнала. В то время как нижняя граница рабочего диапазона частот цифрового синтезатора находится близко к нулю герц, его верхняя граница, в соответствии с теоремой Котельникова, не может превышать половины тактовой частоты..

Другая серьезная проблема – высокое содержание нежелательных спектральных составляющих из-за ошибок преобразования в ЦАП. С этой точки зрения цифровой синтезатор ведёт себя как частотный смеситель, генерирующий побочные составляющие на комбинационных частотах. В то время как частотное местоположение этих составляющих можно легко вычислить, их амплитуда гораздо менее предсказуема. Как правило, искажения более низкого порядка имеют наиболее высокую амплитуду. Тем не менее, искажения высокого порядка также приходится учитывать при разработке архитектуры конкретного синтезатора. Амплитуда паразитных спектральных составляющих увеличивается и с увеличением тактовой частоты, что также ограничивает диапазон генерируемых частот. Практические значения верхней границы диапазона находятся в районе от нескольких десятков до нескольких сотен мегагерц при уровне дискретных спектральных продуктов -50…-60 дБн. Очевидно, прямое умножение выходного сигнала частотного синтезатора невозможно из-за дальнейшей деградации спектрального состава.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Ссылка на основную публикацию
Adblock detector