Электронное зажигание с датчиком холла

Электронное зажигание с датчиком холла

Штатное контактное зажигание оппозитов обычно оставляет желать лучшего, потому сразу по приобретение своего мотоцикла я дополнил его сперва транзисторным коммутатором, а затем и электронным блоком опережения с датчиком Холла, полностью избавившись от механики. Изначально зажигание предназначалось для установки на мотоциклы Урал и Днепр, но позже было проверено и на двухтактном мотоцикле (с холостой искрой). Проект полностью открытый и к нему прилагается всё необходимое.

    Особенности зажигания:

  • управляющий микроконтроллер PIC16F84 или PIC16F628;
  • возможность установки как на 12-ти вольтовую бортсеть так и на 6-ти вольтовую;
  • безконтактный датчик Холла (от а/м ВАЗ);
  • коммутатор типа *.3734 (от а/м ВАЗ) или самодельный;
  • возможность переключения между тремя характеристиками УОЗ;
  • доступны характеристики УОЗ как для оппозитов так и для двухтактных мотоциклов;
  • два входа дополнительных функций, могут быть выбраны двигатель-стоп, ограничение оборотов, защита и др.;
  • отключение катушки зажигания при простое двигателя через 3-4 секунды (актуально для самодельных коммутаторов).

Благодарю Manowar’а за советы по схеме, Pilot666 за консультации по вазовскому коммутатору, VICA и Max Madness за помощь по двухтактникам.

Здесь тема в форуме OPPOZIT.RU по обсуждению этого зажигания.

Схема управления опрежением

Схема показана на рисунке, предназначена для работы в паре с коммутатором *.3734. Жёлтым цветом обозначены типы элементов, которые необходимо использовать в 6-ти вольтовой бортсети (в таком варианте схема может работать и на 12-ти вольтах). Темным цветом на схеме обозначены необязательные элементы, их можно не ставить, если не собираешся пользоваться соответствующей функцией. Если нет необходимости в переключении между характеристиками УОЗ на ходу, можно поставить на плате переключатели или перемычки без помехогасящей схемы (цепи VD3-C7-R6 и т.д.). Вывод микроконтроллера RB2 является инверсным сигналом управления и необходим при подключении некоторых самодельных коммутаторов.
Чтобы правильно включить диод (VD1, VD2) или стабилитрон (VD3-VD7) необходимо его прозвонить: положение, в котором он будет прозваниваться (или иметь меньшее сопротивление), соответствует минусу на том выводе куда указывает "стрелка" на схеме (катод). Вместо стабилизатора КР142ЕН5А можно использовать 78M05 (78С05, 7805 и др.), ставить радиатор нет необходимости. При установке на 6-ти вольтовую бортсеть лучше поставить стабилизатор с низким падением напряжения (low drop out) КР1158ЕН5В, а выпрямительный диод по входу поставить Шоттки (подойдёт любой на 0.5 и более ампер). Нумерация выводов триодов дана с их лицевой стороны: у КР142 там, где маркировка; у VT1 там, где срез на корпусе. Мощность резисторов может быть 0,125Вт и меньше.
Кварцевый резонатор ZQ1 полезно заменить на керамический резонатор. Обычно он 3-х выводный и имеет встроенные емкости, в схеме обведен пунктиром. Такой резонатор лучше переносит вибрацию и температуру, но достать его сложнее.
Для удобства проверки и программирования микроконтроллер лучше не запаивать, а разместить на колодке. Это позволит легко его заменить в случае неисправности. Практика показала, что в колодке контроллер держится хорошо.
Размещать блок опережения во внутренних отсеках двигателя нельзя, там слишком высокая температура. Крупные элементы (транзисторы, кварц и пр.) желательно залить термоклеем, чтобы их не сорвало вибрацией.

Также настоятельно рекомендую поставить свечные колпачки с помехогасящими резисторами (или силиконовые провода, или свечи со встроенным резистором), это значительно снизит уровень помех в сети, стабилизирует работу устройства и повысит его надежность.

Я использую свечные колпачки NGK LB05FP со встроенным сопротивлением 5КОм. При установке других колпачков или силиконовых проводов с распределённым сопротивлением, желательно обеспечить сопротивление в 5-10КОм.

Исходный текст программы и файл прошивки микроконтроллера генерируются программой IgnMaster. Программа написана для микроконтроллеров фирмы Microchip PIC16F84 и PIC16F628. Контроллеры даже одной марки отличаются по своим характеристикам, что можно определить только по их полной маркировке. По максимальной рабочей частоте PICи бывают на 4, 10 и 20МГц, нам подойдет любой из них. По температурному диапазону в коммерческом (0. +70С), в индустриальном (-40. +85С) и в расширенном (-40. +125С) исполнении. Последние найти врядли удастся, поэтому останавливаемся на индустриальных. Таким образом, пример полной маркировки требуемого контроллера: PIC16F84-04I/P, здесь PIC16F84 — марка МК, 04 — максимальная рабочая частота, I — индустриальный диапазон, P — корпус PDIP для монтажа в отверстия (SO — SOIC для поверхностного монтажа).

Маркировка рекомендуемых микроконтроллеров:
PIC16F84-04I/P
PIC16F84-10I/P
PIC16F84A-04I/P
PIC16F84A-20I/P
PIC16F628-04I/P
PIC16F628-20I/P
PIC16F628A-I/P

Угол опережения зажигания

В программу микроконтроллера может быть включено до 3-х характеристик УОЗ. Переключение между ними осуществляется замыканием на массу или отключением от массы выводов SELECT1 и SELECT2:
график опережения зажигания по умолчанию — выбирается когда выводы SELECT1 и SELECT2 отключены от земли;
график опережения зажигания 1 — выбирается замыканием вывода SELECT1 на землю, при этом SELECT2 отключен от земли;
график опережения зажигания 2 — выбирается замыканием вывода SELECT2 на землю, при этом состояние SELECT1 не имеет значения.

С версии 2.0 программа позволяет наглядно построить желаемый график по нескольким опорным точкам. Для этого нужно выбрать необходимый угол, из падающего списка, для каждой из частот вращения двигателя. На частотах 5000 об/мин и выше можно отключить опережение (выбрать НЕТ), и тем самым ограничить обороты двигателя (на двухтактных моторах может не пройти, лучше использовать дополнительную функцию). Частота вращения и угол опережения зажигания берутся по коленвалу двигателя. Также можно выбрать из нескольких готовых графиков. График снятый с Уктуса полностью не поместился, т.к. система не даёт такого высокого опережения, поэтому он дан с запаздыванием примерно на 5-10 градусов.

Программа микроконтроллера поддерживает до двух дополнительных функций. Включение необходимой функции осуществляется замыканием на массу выводов FUNC1 и FUNC2. Какому выводу соответствует дополнительная функция можно выбрать в диалоге программы IgnMaster.

    Доступные дополнительные функции:

  • ДВИГАТЕЛЬ-СТОП — при включении функции двигатель глохнет, когда функция отключена двигатель работает;
  • ПРОГРЕВ СВЕЧЕЙ — когда двигатель заглушен (нет сигнала с датчика) и включена данная функция, контроллер непрерывно даёт искру с частотой примерно соответствующей 1500 об/мин, если двигатель запущен эта функция не работает;
  • ЗАЩИТА 1500 или 2000 ОБ/МИН — в этом режиме двигатель может работать только на низких оборотах, при превышении некоторого числа оборотов (1500 или 2000 об/мин) коленвала, двигатель отключается, индикаторный светодиод при этом постоянно горит, после срабатывания защиты вновь запустить двигатель можно только выключив и включив зажигание;
  • ОГРАНИЧЕНИЕ ОБОРОТОВ 3000, 3500, 4000, 5000, 6000 ОБ/МИН — при включении данной функции контроллер ограничивает обороты двигателя на соответствующей частоте, причем двигатель не глохнет, а за счет пропуска искры перестает набирать обороты. Эта функция может использоваться при обкатке.

Можно использовать датчик Холла от а/м ВАЗ (аналог Honeywell 2AV50A), работает он в диапазоне температур -40. +125С и в диапазоне напряжений питания 5. 16В. В журнале МОТО (№08 2003 стр.102) печаталась отличная статья о выборе датчика Холла, посмотреть можно здесь: часть 1, часть 2. Часто причиной того, что двигатель с новым зажиганием не набирает обороты является именно некачественный датчик.
Для питания датчика можно использовать 5-ый контакт разъема коммутатора *.3734 или собрать отдельную схему питания, при питании от 6-ти вольт датчик можно подключить напрямую, но подальше от катушки зажигания, иначе будете менять датчики каждую неделю. Запитывать датчик напрямую от 12-ти вольт не рекомендуется.
Провода к датчику желательно использовать экранированные, хотябы там где они проходят вблизи катушки и высоковольтных проводов, иначе попавший на них разряд может вывести из строя датчик или микроконтроллер.

Читайте также:  Как оформить вьющиеся розы

Модулятор должен быть выполнен из стали с хорошими магнитными свойствами, подойдет Сталь 20 или Сталь 30. В исполнении для оппозитов модулятор насаживается на распределительный вал и имеет два металлических сектора по 30 градусов или две прорези по 30 градусов разнесенные на 180 градусов. Конфигурацию с сектором легче изготовить самому, а конфигурацию с прорезью удобнее изготавливать на токарном станке. При использовании программы для генерации прошивки микроконтроллера (IgnMaster) необходимо указать конфигурацию используемого модулятора.
Модулятор имеет такую замысловатую форму в связи с тем, что распредвал оппозитов имеет значительные осевые биения (особенно на изношенных двигателях) и при иной форме шторки может разбить датчик.
От точности исполнения модулятора будет зависеть равномерность работы зажигания по цилиндрам, поэтому нужно отнестись к этому с особой ответственностью. При этом важен не столько размер лепестков (допустимо отклонение ±3 градуса) сколько их симметричность.

    Доступные чертежи модуляторов:

  • Модулятор с сектором 30 градусов: modul_01.pdf;
  • Модулятор с вырезом 30 градусов: modul_02.pdf;
  • Модулятор с вырезом 30 градусов под распредвал нижнеклапанных мотоциклов: modul_03.pdf.

Стенки модуляторов изготовленных по чертежам сделаны с запасом по длине, поэтому их нужно подрезать уже по месту. Для закрепления модулятора на распредвалу нижнеклапанных мотоциклов, вал нужно доработать — просверлить по оси отверстие и нарезать резьбу M4 или М5 под болт, перед этим конец вала надо отпустить. Различные варианты установки модулятора и датчика можно посмотреть здесь.

При установке на двухтактный двухцилиндровый двигатель шторка имеет два сектора (или выреза) по 60 градусов разнесенные на 180 градусов, при установке на одноцилиндровый двигатель сектор должен быть только один. Также следует помнить, что на двухтактных двигателях имеется проблема с перемагничиванием шторки из-за близости генератора. Решается или экранированием и качественным ДХ или установкой самодельного оптического датчика. Более полно эта тема освещена на ижевских сайтах.

Устройство предназначено для работы в паре с коммутатором *.3734 устанавливаемом на а/м ВАЗ. Этот коммутатор имеет функцию многоискрового режима при пуске и пониженном напряжении питания, при простое двигателя автоматически отключает катушку без искры. Я могу рекомендовать коммутаторы следующих моделей: 96.3734, 961.3734, 133.3734. Цоколёвка разъёма коммутатора изображена на рисунке. Коммутаторы завода ВТН 0529.3734 и 0729.3734 часто имеют проблемы при работе в паре с данным зажиганием и лучше их не применять. О решении некоторых проблем связанных с коммутатором можно узнать здесь.

Также могут использоваться и предложенные транзисторные схемы коммутаторов, но они примитивнее и никаких преимуществ не дают, хотя практика показала их высокую надёжность. Эти коммутаторы я эксплуатировал только со стандартными уральскими двухвыводными катушками.

Коммутатор взят с просторов интернета. Схема проста и требует минимума элементов. При использовании этого коммутатора в схеме опережения цепочка VT1-R4-R14 не нужна. Мощность резистора R1 — 1Вт, резисторов R2 и R3 — 0,125Вт и ниже. Нумерация выводов транзисторов дана со стороны маркировки. Транзистор VT1 необходимо установить на радиатор. Транзистор КТ898А1 имеет изолированный корпус и не требует диэлектрических прокладок (только не забудьте теплопроводную пасту типа КПТ-8). Если использовать КТ898А, то его теплоотвод соединен с коллектором (вывод 2), и сажать его на радиатор без изоляции нельзя! Необходимы слюдяные прокладки и диэлектрические шайбы для изоляции винтов.

Коммутатор взят мной с сайта тамбовских байкеров: http://twolfs.narod.ru. Этот коммутатор подключается к выводу RB2 микроконтроллера и цепочка VT1-R4-R14 на схеме опережения не нужна. В скобках указаны значения для 6-ти вольтовой сети. Мощность резисторов составляет: R1 и R5 — 0.5Вт, R2 и R3 — 2Вт, R4 — 5Вт, но вполне может быть снижена до R3 — 0.5Вт, R4 — 2Вт. Как прозванивать стабилитрон VD1, написано выше. Нумерация выводов транзисторов дана со стороны маркировки. Транзисторы необходимо установить на радиатор. Размер радиатора может быть небольшим (штыревой 30×50мм лишь незначительно греется). Т.к. теплоотвод транзисторов соединен с коллектором (вывод 2), то сажать их на один радиатор без изоляции нельзя! Необходимы слюдяные прокладки и диэлектрические шайбы для изоляции винтов. Радиатор нужно прикрепить к плате винтами, нельзя чтобы он висел только на транзисторах (оторвет)! Силовые дорожки (все к транзистору VT2) на плате сделать по возможности более широкими и покрыть слоем припоя, чтобы не было пережиганий.

Катушку зажигания можно использовать любую из двухвыводных (на фото слева направо): стандартную оппозитную с разрядниками, или катушки высоких энергий от а/м Газель 3012.3705, от а/м Ока 4412.3705 и другие.

Светодиод включается при входе активного элемента модулятора (лепесток или вырез) в датчик Холла и гаснет при его выходе. При начальной регулировке для оппозитных двигателей момент выхода шторки из датчика (и соответственно отключения светодиода) должен примерно совпадать с ВМТ, именно в этот момент будет происходить искрообразование на пусковых оборотах. Для двухтактных двигателей шторка должна быть смещена примерно на 10-15 градусов в сторону раннего зажигания.
Естественно допускается поворачивать шторку в сторону более раннего или более позднего зажигания, подбирая наиболее подходящий режим работы двигателя.

Схема включения зажигания в бортсеть

Схема для 12-ти вольтовой бортовой сети с внешним блоком электронного опережения зажигания и коммутатором типа *.3734. Второй вывод катушки зажигания можно подключать или к замку зажигания или прямо на аккумулятор (лучше через предохранитель). Последний вариант более помехоустойчив.

Магнитоэлектрический датчик Холла получил свое название по имени Э. Холла американского физика, открывшего в 1879 г. важное гальваномагнитное явление.

Элемент Холла представляет собой тонкую пластинку, выполненную из полупроводникового материала (кремний, германий), с четырьмя электродами. Если через такую пластинку проходит ток I и на нее одновременно действует магнитное поле, вектор магнитной индукции В которого перпендикулярен плоскости пластинки, то на параллельных направлению тока гранях возникает э.д.с. Холла, которое определяется по следующему выражению:

Uн = кхIВ/d,
кх – постоянная Холла, зависящая от материала пластинки; d – толщина пластинки

Рис. Принцип работы элемента Холла:
1 – магнит; 2 – пластинка из полупроводникового материала

Через пластинку пропускается ток примерно 30 мА, тогда как напряжение Холла составляет 2 мВ, увеличиваясь с ростом температуры. Пластинка обычно представляет одно целое с интегральной схемой, осуществляемой усиление и формирование сигнала.

Если между магнитом и полу­проводником поместить перемещающийся экран с прорезями, получим импульсный генератор Холла.

Схема прерывателя-распределителя с датчиком Холла представлена на двух следующих рисунках.

Рис. Принцип работы датчика Холла:
1 – постоянный магнит; 2 – ротор; 3 – элемент Холла; 4 – операционный усилитель; 5 – формирователь импульсов; 6 – выходной каскад; 7 – блок стабилизации

Магнитное поле создается постоянным магнитом 1, а прерывание магнитного поля осуществляется ротором (экраном) 2 с окнами, укрепленным на валике распределителя. При прохождении окна ротора около постоянного магнита силовые линии его магнитного поля пронизывают поверхность элемента Холла и на его выходе возникает ЭДС. Если воздушный зазор между магнитом и элементом Холла перекрывается шторкой, магнитное поле замыкается на шторку экрана и не попадает на элемент Холла.

Читайте также:  Из чего лучше делать межкомнатные двери

Рис. Схема прерывания магнитного потока:
1 – датчик Холла; 2 – держатель датчика; 3 – воздушный зазор; 4 – магнитный поток; 5 – ротор

Количество шторок и окон экрана соответствует количеству цилиндров двигателя. Ширина шторки экрана соответствует углу, при котором выходной транзистор коммутатора пропускает ток через первичную обмотку зажигания.

Учитывая небольшое напряжение, вырабатываемое элементом Холла, оно обрабатывается и усиливается.

Операционный усилитель 4 усиливает сигнал датчика и через формирователь импульсов 5 подает сигнал на базу выходного транзистора 6 и открывает его. Для исключения влияния на выходной сигнал датчика колебаний напряжения сети и температуры в схеме датчика имеется блок стабилизации 7.

При нахождении шторки экрана в щели воздушного зазора, величина магнитного потока резко падает, вследствие замыкании магнитного потока на шторку.

Рис. Импульсы датчика Холла:
В – магнитная индукция; Uн – напряжение, вырабатываемое элементом Холла; Ug – напряжение, вырабатываемое датчиком Холла; I – ток первичной обмотки катушки зажигания; tz – момент зажигания электрической искры; а – изменение магнитной индукции; б – изменение напряжения, вырабатываемого элементом Холла; в – изменение напряжения, вырабатываемого датчиком Холла; г – изменение силы тока первичной катушки зажигания.

Напряжение, вырабатываемое элементом Холла Uн, поступает на операционный усилитель, где происходит усиление сигнала. После этого ток поступает на формирователь импульсов и там происходит переработка из аналогового сигнала в цифровой. Затем полученный цифровой сигнал поступает на выходной каскад и окончательно усиливается до величины напряжения Ug, достаточного для работы транзисторного коммутатора. При этом напряжение Ug за счет инверсии выходного каскада вырабатывается в момент отсутствия напряжения Uн с входа элемента Холла, т.е. в момент перекрытия шторкой экрана воздушного зазора, что соответствует напряжению Uн ниже 0,4 В. В таком положении экрана транзистор выходного каскада Т0 находится в открытом состоянии, при этом от коммутатора через транзистор Т0 проходит ток и при этом база транзистора Т1 соединяется с массой.

Рис. Электрическая схема коммутатора и датчика Холла:
1 – датчик Холла; 1а – выходной сигнал; 2 – коммутатор; 3 – замок зажигания; 4 – дополнительный резистор; 5 – шунтирование дополнительного резистора; 6 – катушка зажигания

Учитывая, что проводимость транзистора Т1 n-p-n, отсутствие положительного потенциала этого транзистора приводит к его закрытию. В результате этого прекращается подача положительного потенциала на базу В через резистор R4 и коллекторно-эмитерный переход транзистора Т1. При этом ток не проходит через резистор R7 и база В включения транзисторов Т2/Т3 замыкается на массу. Учитывая проводимость этих транзисторов n-p-n, отсутствие положительного заряда на базе В, транзисторы закрываются и ток в первичную обмотку катушки зажигания не поступает. При выходе экрана из воздушного зазора напряжение с элемента Холла достигает 0,4В и через первичную обмотку катушки зажигания начинает протекать ток.

В момент попадания зуба ротора в зазор датчика на выходе датчика создается напряжение Umax примерно на 3 В меньше напряжения питания. Если через зазор датчика проходит прорезь ротора, напряжение на выходе датчика Umin близко к нулю (не более 0,4 В). Отношение периода Т к длительности Ти (скважность) равна трем. Напряжение питания датчика соответствует напряжению бортовой сети и находится в пределах 8…14 В.

Для преобразования управляющих импульсов бесконтактного датчика в импульсы тока в первичной обмотке катушки зажигания применяются коммутаторы. Коммутатор преобразует управляющие импульсы датчика в импульсы тока в первичной обмотке катушки зажигания. Коммутатор соединен с генератором импульсов (бесконтактным датчиком) тремя проводниками. Коммутатор управляет зажиганием в зависимости от частоты вращения валика датчика-распределителя, напряжения аккумулятора, полного сопротивления катушки зажигания и при любых режимах работы двигателя выдает импульсы напряжения постоянной величины. Во время прохождения положительного импульса (напряжение Umax ) от бесконтактного датчика происходит постепенное ( в течении 4…8 мс) нарастание тока в первичной обмотке катушки зажигания до максимальной величины В равной 8…9 А. В момент, когда напряжение на выходе датчика падает до Umin , выходной транзистор коммутатора закрывается и ток через первичную обмотку катушки зажигания резко прерывается. В результате во вторичной обмотке индуцируется импульс высокого напряжения.

Отдельно элементы прерывателя-распределителя с датчиком Холла показаны на рисунке. Пластинка и остальные составляющие датчика Холла устанавливается внутри пластмассового корпуса, залитого смолой. Датчик Холла неразборный и не подлежит ремонту. Для соединения с коммутатором датчик Холла имеет 3 вывода.

Рис. Элементы прерывателя-распределителя с датчиком Холла:
1 – ротор: 2 – шторка; 3 – держатель датчика Холла; 4 – постоянный магнит и датчик Холла; 5 – воздушный зазор

Датчик-распределитель выдает управляющие импульсы низкого напряжения и распределяет импульсы высокого напряжения по свечам зажигания. Он имеет центробежный и вакуумный регуляторы опережения зажигания. Бескон­тактный датчик в сборе с опорной пластиной имеет возможность поворачиваться в зависимости от разряжения, подводимого к вакуумному регулятору.

Катушка зажигания, адаптированная к данной системе зажигания, установлена рядом с коммутатором. Она преобразует прерывистый ток низкого напряжения (12 В) в ток высокого напряжения (20…25 кВ) необходимый для пробоя воздушного зазора между электродами свечей зажигания. Катушка имеет в верхней части отверстие, закрытое пробкой диаметром 5.5 мм для защиты катушки от избыточного внутреннего давления. Пробка выталкивается из отверстия при росте давления вследствие повышения температуры из-за короткого замыкания.

Как это работает?

Принцип действия бесконтактной системы зажигания заключается в следующем: При включенном зажигании и вращающемся коленвале двигателя датчик-распределитель выдает импульсы напряжения на коммутатор, который преобразует их в прерывистые импульсы тока в первичной обмотке катушки зажигания. В момент прерывания тока в первичной обмотке индуктируется ток высокого напряжения во вторичной обмотке. Ток высокого напряжения идет от катушки зажигания по проводу через угольный контакт на пластину ротора, и затем через клемму крышки распределителя по проводу высокого напряжения, в наконечнике которого установлен помехоподавительный экран, попадает на соответствующую свечу зажигания и воспламеняет рабочую смесь в цилиндре.

Наибольшее распространение получили магнитоэлектрические датчики — индукционные(системы с ними маркируются TSZi) и датчики Холла(системы с ними маркируются TSZh).

Система небезопасна и требует осторожности. Если, например, отсоединить провод от свечи — может «сгореть» коммутатор или распределитель.

Прежде, давайте разберём эти два датчика, что же они представляют из себя?

Работа индуктивного датчика положения основана на изменении индукции чувствительного элемента при изменении зазора между ним и ферромагнитным движущимся объектом.

Ферромагнитный объект — объект, обладающий ферромагнитными свойствами(т.е. оно активно притягивает к себе магнит и активно притягивается магнитом).

В индуктивном датчике имеются катушка из обмотки провода и магнит. В качестве сопряженной детали используется ротор, состоящий из пластин определенного размера.

1 – индуктивный датчик; 2 – пластины ротора

Каждый раз, когда пластина ротора проходит около датчика импульсов, изменяется магнитное поле, в результате чего в обмотке катушки индуцируется импульсное напряжение.

Индуктивный датчик вырабатывает сигнал, близкий к синусоидальному, поэтому его приходится преобразовывать в форму, более удобную для управления током в первичной обмотке (то есть сигнал датчика искусственно преобразуется в форму, близкую к прямоугольной, увеличивается крутизна фронта и спада, обрезается верхушка импульса и т.п.).

Читайте также:  Токопроводящая лента для шлейфа

Магнитоэлектрический датчик Холла получил свое название по имени Э.Холла, американского физика, открывшего в 1879 г. важное гальваномагнитное явление.

Суть данного явления заключалась в следующем: Если на полупроводник, по которому (вдоль) протекает ток, воздействовать магнитным полем, то в нем возникает поперечная разность потенциалов (ЭДС Холла). Возникающая поперечная ЭДС может иметь напряжение только на 3 В меньше, чем напряжение питания.

а — нет магнитного поля, по полупроводнику протекает ток питания — АВ; б — под действием магнитного поля — Н появляется ЭДС Холла — ЕF; в — датчик Холла

Датчик Холла имеет щелевую конструкцию. С одной стороны щели расположен полупроводник, по которому при включенном зажигании протекает ток, а с другой стороны — постоянный магнит. В щель датчика входит стальной цилиндрический экран с прорезями. При вращении экрана, когда его прорези оказываются в щели датчика, магнитный поток воздействует на полупроводник с протекающим по нему током и управляющие импульсы датчика Холла подаются в коммутатор, в котором они преобразуются в импульсы тока в первичной обмотке катушки зажигания.

Датчик состоит из постоянного магнита(2), пластины полупроводника(3) и микросхемы. Между пластинкой(3) и магнитом(2) имеется зазор(4). В зазоре датчика находится стальной экран(1) с прорезями. Когда через зазор проходит прорезь экрана, то на пластинку полупроводника действует магнитное поле и с нее снимается разность потенциалов. Если же в зазоре находится тело экрана, то магнитные силовые линии замыкаются через экран и на пластинку не действуют. В этом случае разность потенциалов на пластинке не возникает.

1 — свечи зажигания; 2 — датчик-распределитель, 3 — коммутатор, 4 — катушка зажигания

Данные системы являются бесконтактными системами зажигания с нерегулируемым временем накопления энергии. Бесконтактная система зажигания с нерегулируемым временем накопления энергии принципиально отличается от контактно-транзисторной только тем, что в ней контактный прерыватель заменен бесконтактным датчиком. На рисунке ниже приведена электрическая схема системы:

Принцип работы: Сигнал с обмотки L магнитоэлектрического датчика через диод VD2, пропускающий только положительную полуволну напряжения, и резисторы R2, R3 поступает на базу транзистора VT1. Транзистор открывается, шунтирует переход база-эмиттер транзистора /Т2, который закрывается. Закрывается и транзистор VT3, ток в первичной обмотке катушки зажигания прерывается, и на выходе вторичной обмотки возникает высокое напряжение. В отрицательную полуволну напряжения транзистор VT1 закрыт, открыты VT2 и VT3, и ток начинает протекать через первичную обмотку Катушки возбуждения. Очевидно, что число пар полюсов датчика должно соответствовать числу цилиндров двигателя.

Цепь R3-C1 осуществляет фазосдвигающие функций, компенсирующие фазовое запаздывание протекания тока в базе транзистора VT1 из-за значительной индуктивности обмотки датчика L, чем снижается погрешность момента искрообразования.

Стабилитрон VD3 и резистор R4 защищают схему коммутатора от повышенного напряжения в аварийных режимах, так как, если напряжение в бортовой цепи превышает 18 В, цепочка начинает пропускать ток, транзистор VT1 открывается и закрывается выходной транзистор VT3. Цепями защиты от опасных импульсов напряжения служат конденсаторы СЗ, С4, С5, С6; диод VD4 защищает схему от изменения полярности бортовой сети. Форма и величина выходного напряжения магнитоэлектрического датчика изменяются с частотой вращения, что влияет на момент искрообразования.

1 — свечи зажигания; 2 — датчик-распредепитель; 3 — коммутатор; 4 — генератор; 5 — аккумуляторная батарея; 6 — монтажный блок; 7 — репе зажигания; 8 — катушка зажигания; 9 — датчик Холла

Данные системы являются системами зажигания с регулированием времени накопления энергии. Данная система зажигания пришла на смену TSZi, чтобы исправить 2 недостатка:

  1. Форма и величина выходного напряжения магнитоэлектрического датчика изменяются с частотой вращения, что влияет на момент искрообразования.
  2. Уменьшение вторичного напряжения при росте частоты вращения коленчатого вала. Поэтому более перспективна система с регулированием времени накопления энергии.

В микросхеме коммутатора сигнал в блоке формирования периода, накопления энергии сначала инвертируется, затем интегрируется. На выходе интегратора образуется пикообразное напряжение, величина которого тем больше, чем меньше частота вращения двигателя. Это напряжение поступает на вход компаратора, на другой вход которого подано опорное напряжение. Компаратор преобразует величину напряжения во время. Сигнал на входе компаратора имеет место тогда, когда величина пилообразного напряжения достигает опорного и превышает его. При большой частоте вращения величина пилообразного напряжения мала, соответственно мала и длительность сигнала на выходе компаратора. С исчезновением выходного сигнала компаратора через схему управления открывается транзистор VT1, и первичная .цепь зажигания включается в сеть. Следовательно, время накопления энергии в катушке соответствует времени отсутствия сигнала на выходе компаратора. Уменьшение длительности выходного сигнала компаратора позволяет увеличить относительную величину времени накопления энергии и тем самым стабилизировать ее абсолютное значение.

Блок ограничения силы выходного тока срабатывает по сигналу, снимаемому с резисторов, включенных последовательно в первичную цепь зажигания. Если этот сигнал достигает уровня соответствующего силе тока 8 А, блок переводит выходной транзистор в активное состояние с фиксированием этой величины тока.

Блок безискровой отсечки отключает катушку зажигания в случае, если включено электропитание, но вал двигателя неподвижен. При этом, если при остановленном двигателе выходное напряжение датчика соответствует низкому уровню, катушка отключается сразу, в противном случае отключение происходит через 2 — 5 с.

Схема насыщена элементами защиты от всплесков напряжения и включения обратной полярности питания. Регулировка угла опережения зажигания осуществляется традиционными способами, т.е. центробежным и вакуумным регуляторами.

Давайте обобщим всё прочитанное. Не смотря на разность датчиков, системы схожи в построении и различаются внутренним устройством некоторых компонентов. Давайте взглянем на систему и опишем последовательно работу:

Итак, водитель поворачивает ключ в замке зажигания, тем самым замыкая цепь. Ток начинает поступать из аккумулятора по замкнутому замку зажигания.

Можно сказать, что питаниец цепи происходит по схеме Аккумулятор->Стартер->Генератор. При нахождении ключа в положении «стартер» замыкаются контакты 50 и 30. Электрический ток поступает на реле стартера. Там появляется магнитное поле, что приводит к тому, что бендикс стартера вводится в зацепление с шестернёй маховика. Включается электродвигатель стартера и он начинает крутит маховик. Тот в свою очередь начинает раскручиваться и при достижении скорости, большей чем допустимая скорость вращения вала шестерни стартера привод стартера выводит её из зацепления. В свою очередь, вращение коленчатого вала передаётся на вращение вала генератора, что в свою очередь приводит к выработке электрического тока на нём, который питает бортовую сеть автомобиля и подзаряжает аккумулятор.

1 — свечи зажигания; 2 — датчик-распределитель; 3 — распределитель; 4 — датчик импульсов; 5 — коммутатор; 6 — катушка зажигания; 7 — монтажный блок; 8 — реле зажигания; 9 — выключатель зажигания; А — к клемме генератора.

Электрический ток поступает на первичную обмотку катушки зажигания(6). Коммутатор, получая сигнал с датчика(4), прерывает или наоборот включает первичную обмотку. Когда протекание тока по первичной обмотке прерывается, то во вторичной обмотке вознекате ток высокого напряжение, который подаётся по высоковольтному проводу на распределитель. Распределитель, вал которого приводится в движение от шестерни привода масляного насоса или коленчатого вала(зависит от конкретного устройства двигателя) распределяет искру по свечам, тем самым воспламеняя смесь в нужном цилиндре двигателя в нужное время.

Ссылка на основную публикацию
Adblock detector